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a b s t r a c t

We consider the problem of learning sparse linear models for multi-label prediction tasks under a hard
constraint on the number of features. Such budget constraints are important in domains where the acqui-
sition of the feature values is costly. We propose a greedy multi-label regularized least-squares algorithm
that solves this problem by combining greedy forward selection search with a cross-validation based
selection criterion in order to choose, which features to include in the model. We present a highly effi-
cient algorithm for implementing this procedure with linear time and space complexities. This is
achieved through the use of matrix update formulas for speeding up feature addition and cross-validation
computations. Experimentally, we demonstrate that the approach allows finding sparse accurate predic-
tors on a wide range of benchmark problems, typically outperforming the multi-task lasso baseline
method when the budget is small.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multi-label learning [1] concerns the problem of learning to
make predictions about the association between data points and
a set of candidate labels. In multi-label classification, one aims to
predict which of the available labels are relevant with respect to
the data point of interest, and which are not. In label ranking
(see e.g. [2]) one rather predicts the ordering over the set of labels,
where the labels best matching the data point appear at the top of
the ordering. The applications of multi-label learning are varied,
since in almost any domain of interest there are usually several
interesting properties that can be simultaneously used to describe
an object. For example, an image often has several objects appear-
ing in it, a piece of music or a movie represents multiple genres, or
a newspaper article may belong to several topic categories.

Multi-label methods are often divided into two categories:
problem transformation methods and algorithm adaptation meth-
ods [3]. The former aim at dividing the original problem into one or
more single-label classification or regression problems whereas
the latter are based on extending existing single-task approaches
to multi-label learning. There are a rich family of different ap-
proaches for both categories.

Two of the most common problem transformation methods are
binary relevance method (BR) and label power-set method (LP).
While BR divides the multi-label problem into binary single-task

problems, one task per label, LP creates a binary single-label prob-
lem for every possible label combination. Compared to BR, LP has
the advantage of being able to model the correlation between the
labels, but this comes at a steep computational price as the number
of possible label combinations grows exponentially with respect to
the size of the label set. More advanced transformation methods
such as RAKEL [4] have been developed to overcome this problem.
Examples of single-task classifiers adapted to make use of label
correlations include the ML-kNN [5] algorithm, that extends the
K-nearest neighbors algorithm to multi-label classification, and
the ML-C4.5 [6] multi-label decision tree method. For a compre-
hensive overview and experimental comparison of multi-label
methods, we refer to Madjarov et al. [7].

In this work we consider the BR type of setting, where for each
label one constructs a linear predictor, that produces scorings from
which the classifications or rankings are derived. In many applica-
tions sparsity, meaning that for a significant number of features the
corresponding coefficients in the models are set to zero, is a desir-
able property. The three most common motivations for learning
sparse models are the following. Enforcing sparsity has a regulariz-
ing effect which may help to prevent overfitting, models depending
only on a few variables are easier to understand and explain by hu-
man experts, and sparse models are cheaper to predict with than
dense ones. The focus of this paper is especially on the third point
of view.

As pointed out by Xu et al. [8], the prediction cost can, in turn,
be divided into the times required for evaluating the models and
for extracting the feature values. For linear models, the evaluation
time is proportional to the number of nonzero model entries,
totaled over all models multi-label learning. In contrast, the fea-
ture extraction time is proportional to the set of unique features
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used for prediction. The feature value is extracted only once for a
single data point, while the value can be used to predict several
labels. The difference between the two types of sparsity is illus-
trated in the following example, where two linear models have
the same model evaluation cost, but different feature extraction
cost. Let

W1 ¼

1 0 0 0

3 0 0 0

0 2 0 0

0 �1 0 0

0 0 0 3

0 0 0 1

0 0 2 0

0 0 2 0

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

; W2 ¼

0 0 0 0

2 3 �1 2

0 0 0 0

3 1 4 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

;

denote the matrices determining two sparse linear models. The
rows and columns of both matrices correspond to features and
tasks, respectively. Both matrices have the same number of non-
zero coefficients, but W1 requires all the features for prediction,
whereas W2 requires only two of them.

The feature extraction costs are dominant to the model evalua-
tion costs in many real-world tasks, and hence the focus of this pa-
per is the minimization of the extraction cost. Our problem
definition is quite similar to that of budgeted learning considered
recently by Cesa-Bianchi et al. [9] and Hazan and Koren [10], the
difference being that our work considers multi-label instead of sin-
gle-task learning, and we do not consider settings where different
features may be selected for different data points.

As a motivating example, consider an image recognition system
that simultaneously predicts several properties of a given input
image in real-time. Since each feature used for prediction is ob-
tained from a possibly computationally expensive feature extrac-
tor, one must minimize the number of required features to
ensure real-time recognition. A similar setting is commonly
encountered in medical testing, where we want to perform as
few tests as possible, yet make reliable diagnoses for a patient.
To summarize, we consider the setting in which the number of fea-
tures must be limited even if it decreases the prediction perfor-
mance, because enforcing sparsity due to the high feature
acquisition costs is necessary in numerous practical applications.

Two popular approaches for learning sparse models are the fil-
ter methods, that perform feature selection independently of the
learning algorithm trained on the selected features, and wrapper
or embedded methods where the selection process is optimized
for the learning algorithm. The most prominent of the latter type
of methods are the method known as lasso or basis pursuit, and
the family of greedy search algorithms. There is empirical evidence
in the literature favoring lasso over greedy methods [11] when the
amount of selected features is large. Moreover, it has been shown
that if the model underlying the data is truly sparse lasso con-
verges to it [12]. However, in the setting considered in this work
one must select only a small number of features even if the model
is not truly sparse. Consequently, since the lasso methods are
based on convex regularization, the smaller is the set of selected
features, the worse will be the bias caused by the regularization
on the learnt model [13]. This phenomenon does not concern the
greedy methods, as they are based on a different selection
principle.

In the recent years, techniques applicable to learning sparse
models in the single-label setting have been extended to the mul-
ti-label setting. As a typical example of filter methods, Doquire
and Verleysen [14] proposed a greedy method that combines a
mutual information based selection criterion with a variant of
the LP transformation method. Zhang et al. [15] proposed a naive
Bayes multi-label method that applies as a first stage principal
component analysis in order to reduce the feature set dimension-
ality followed by a genetic algorithm based feature selection
phase. However, the reliance on PCA for dimensionality reduction
makes this and similar methods unsuitable for the setting consid-
ered in this work, as they still need all the original features during
prediction time.

Among the selection methods optimized for the learning
algorithm, sparsity enforcing matrix norm-based regularization
approaches, that extend the commonly used l1-norm to the mul-
ti-task setting, have shown to be especially promising [16–19].
As a representative of the state-of-the art in this area, we consider
the coordinate descent training approach for the l1;1-regularization
based multi-task lasso [17]. The optimization criterion for the
method directly enforces such sparsity structure that leads to min-
imal number of features being used in the model (see matrix W2).
Thus, the method provides a natural baseline for comparing our
work.

We extend the greedy RLS approach [20,21], a greedy forward
selection method for regularized least-squares proposed by some
of the present authors, to multi-label setting. The work continues
the work of Naula et al. [22,23], where a high-level description of
the idea and some preliminary experimental results were pre-
sented. We prove that the resulting training algorithm has linear
time and space complexities, making it computationally highly
competitive for example with the most efficient known coordinate
descent training algorithms proposed for the lasso-type of learning
methods. In our experiments, we compare the predictive perfor-
mance of the multi-label greedy RLS and multi-task lasso ap-
proaches over several real-world data sets, in order to determine
which approach, if any, leads to higher predictive performance.
The results suggest that whenever one wants to strongly enforce
sparsity, the greedy approach is preferable, as on small feature sub-
sets multi-label greedy RLS consistently outperforms multi-task
lasso.

2. Methods

Here, we present the basic concepts and notations relevant for
the following considerations. By ½n� we denote the index set
f1 . . . ng. We use bold lowercase and uppercase letters for denoting
vectors and matrices, respectively. Given a matrix M 2 Rm�n and
index sets R# ½m� and S# ½n�, we use MR;S for denoting the subm-
atrix containing the rows and columns indexed byR and S, respec-
tively. Further, MR; M:;S , and Mi;j are shorthands for, MR;½n�; M½m�;S ,
and Mfig;fjg, respectively. We use analogous notations also for
vectors.

Let

D ¼ ðx1; y1Þ; . . . ; ðxn; ynÞ
� �

;

be a training set of size n, where xi 2 Rd and yi 2 Rt are the feature
and the label vectors of the ith instance, respectively, and d and t are
the numbers of features and labels. The label vectors can be en-
coded so that yi

j ¼ 1 if the ith instance is associated with the jth la-
bel and yi

j ¼ �1 otherwise.
Our aim is to learn from D a real valued function

fl : Rd ! R:
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