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a b s t r a c t

Stereo matching is one of the most important and fundamental topics in computer vision. It is usually
solved by minimizing an energy function, which includes a data term and a smoothness term. The data
term consists of the matching cost, and the smoothness term encodes the prior assumption that the sur-
faces are piecewise smooth. In contrast to the traditional methods, in which the smoothness term is mod-
eled by the pairwise interactions, the smoothness term is modeled with a higher-order model in this
paper. With the prior assumption that a tiny piece of a smooth surface is approximately planar, a
higher-order potential function based on the homography transformations is presented. Then the energy
function defined on a factor graph is proposed, in which the coefficients of the factors depend on the color
information of the input images so that the discontinuous edges are preserved. The belief propagation
(BP) algorithm is adopted to minimize the energy function, and the experimental results tested on the
Middlebury data set show the potential of the proposed method.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stereo is one of the most fundamental topics in computer vi-
sion. Stereo vision attracts many researchers and has been widely
researched since there was the publicly available performance
testing such as the Middlebury benchmark [14], which allows
researchers to compare their algorithms against all the state-of-
the-art algorithms.

Different from the feature matching [1,18], which matches
sparse feature points in two images, the stereo matching can den-
sely match the pixels. The stereo algorithm presented in this paper
use the popular energy minimization framework that is the basis
for most high-performance algorithms such as graph cuts
[9,13,12] and belief propagation (BP) [8,22,21,23]. The stereo is
achieved in these algorithms, essentially, by solving a Markov ran-
dom field (MRF) model. The energy function typically includes a
data term and a smoothness term, where the data term consists
of the matching cost implied by the extracted disparity map and
the smoothness term encodes the prior assumption that the world
surfaces are piecewise smooth. Most smoothness terms are mod-
eled using the well known pairwise interactions. The pairwise

models are easily implemented by computer, and are thus widely
applied.

However, the higher-order models have the ability to encode
significantly more sophisticated priors and structural dependen-
cies among image pixels. With the prior assumption that a tiny
piece of a smooth surface could be considered approximately pla-
nar in 3D world, we propose a novel higher-order model based on
the homography transformations. Then an algorithm to minimize
the model is presented. The main contributions of this paper are
summarized as follows.

The first contribution in this work is the definition of ‘‘smooth-
ness’’ (Section 3.2), which can well express the local-planar bias,
rather than the frontal-planar bias used in many traditional
methods.

Based on the definition of ‘‘smoothness’’, the second contribu-
tion is naturally the proposition of a novel form of the smoothness
term (Section 3.3). In contrast to the traditional smoothness terms
modeled by the pairwise interactions, the smoothness term is
modeled using a higher-order model in this paper. The new energy
function is consequently obtained. In addition, we predefined a
subset including all potential patterns of ‘‘smooth’’ surfaces for a
neighborhood, the exponential computational complexity is
avoided.

As the third contribution, we use different weights for the dif-
ferent neighborhoods, to represent different prior likelihoods of
that the neighborhoods are ‘‘smooth’’. The weights depend on the
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color information of the input images, and the details are intro-
duced in Section 4.

This paper is organized as follows: Section 2 gives the formula-
tion of the stereo problem and briefly reviews the factor graph. In
Section 3, we propose the new smoothness term. Then the factor
coefficients are introduced in detail in the Section 4. Section 5 pre-
sents the algorithm, Section 6 shows the results on the Middlebury
data sets and Section 7 concludes.

2. Energy function

Following the notation in [3,15], the problem of stereo match-
ing can be defined as follows. Let P be the set of pixels in an image
and L be a set of labels which correspond to disparities. The aim is
to find the disparity for each pixel, namely, assign a label dp 2 L to
each pixel p 2 P. It typically requires solving the following minimi-
zation problem.

EðdÞ ¼
X
p2P

EDðdpÞ þ
X

p2P; s2N p

Sðdp;DsÞ; ð1Þ

where d ¼ fdpg includes the labels of all the pixels. N p denotes the
set of pixels that are neighbors of p, and Ds denotes the set of all la-
bels for the neighboring pixels of p. EðdÞ is the energy when the pix-
els are labeled as d. EDðdpÞ is the cost of assigning label dp to pixel p,
and is referred to as the data term. Sðdp;DsÞ measures the cost of
assigning labels dp and Ds to the pixel p and its neighboring pixels,
and is normally referred to as the smoothness term. Namely, we as-
sume that the labels should vary smoothly almost everywhere but
may change dramatically at some places such as pixels along object
boundaries. Minimizing this energy corresponds to the maximum a
posteriori (MAP) estimation problem for an appropriately defined
MRF [11,2].

The energy function is minimized using belief propagation (BP)
algorithm in this paper, because it can well solve the discrete label-
ing problem in MRF [11]. Belief propagation is commonly used in
artificial intelligence and information theory and has demon-
strated empirical success in numerous applications including
low-density parity-check codes, turbo codes, free energy approxi-
mation, and satisfiability [4]. For stereo matching, it has been
widely applied and gets good performances [14]. The BP algorithm
will be briefly reviewed in Section 5. BP operates on a factor graph,
i.e. bipartite graph nodes corresponding to variables P and factors
F , with edges between variables and the factors, as shown in Fig. 1.
In terms of the definition in Fig. 1, the energy function can be writ-
ten as:

E dð Þ ¼
X
fp2F

fpðdpÞ ð2Þ

Here

fpðdpÞ ¼ EDðdpÞ þ SðdpÞ ð3Þ

where dp is a vector of labels for the variable nodes connected to the
factor node fp.

3. Smoothness term

3.1. Smoothness in traditional methods

In most algorithms, pairwise interactions are adopted as the
smoothness prior, i.e. the smoothness term is

P
p;q2N Sðdp; dqÞ and

measures the cost of assigning labels dp and dq to two neighboring
pixels p and q [6,8,21–23]. The common pairwise interactions are
defined as the jump cost based on the degree of difference between
labels. The truncated linear model is commonly used, i.e.

Sðdp;dqÞ ¼ q minðjdp � dqj;gÞ; ð4Þ

where q and g are scalar constants. This equation is defined under
the assumption of piecewise-smooth surfaces and the smoothness
here implies a prior expectation that the neighboring pixels have
the disparities as close as possible. It is conceivable that this
smoothness prior assumption could work well for frontal-planar
surfaces.

Some algorithms using second-order smoothness priors models
get good results [17,10]. In these algorithms, the smoothness terms
involve three variables, i.e. the pixel p, its left neighbor pixel l and
its right neighbor r. The smoothness term is

P
p2PSðdl � 2dp þ drÞ to

robustly favor piecewise linear solutions. In other words, it assume
the disparities of pixels on a smooth surface should satisfy the lin-
ear constrains as possible.

3.2. Definition of smoothness

In practice, if we take a tiny piece of a smooth surface, it is
(approximatively) a plane with few exceptions. Therefore in this
work, we assume ‘‘smoothness’’ means that the image pixels in a
neighborhood represent the 3D points on the (approximatively)
same plane, rather than only the close 3D points. See Fig. 2 for
example.

Given a set of points X in 3D space, with their corresponding im-
age points xi in the reference image and x0i in the target image, if all
the points are on a same plane, there should be a linear transfor-
mation, i.e. homography transformation [7] between the points xi

and x0i, i.e.,

x0i ¼ Hxi ð5Þ

where x and x0 are homogeneous coordinates of the image points. H
is a 3� 3 homography matrix, whose elements are

H ¼

H11 H12 H13

H21 H22 H23

H31 H32 H33

2
664

3
775: ð6Þ

Eq. (5) can be expressed in terms of the vector cross product as
another form x0i � xi ¼ 0. The following equation can be thus
deduced.

Aih ¼ 0 ð7Þ

where h ¼ ½H11;H12;H13;H21;H22;H23;H31;H32;H33�T , and Ai is a
2� 9 matrix calculated by xi and x0i. If defining the homogeneous

coordinates xi ¼ ðx; y; zÞT and x0i ¼ ðx0; y0; z0Þ
T
;Ai could be calculated

as

Ai ¼
�xz0 �yz0 �z0z 0 0 0 x0x x0y x0

0 0 0 xz0 �yz0 �z0z y0x y0y y0

" #
: ð8Þ

Fig. 1. Bipartite graph. The ellipses represent the variables (image pixels) and the
quadrangles represent the factors. Every edge connects a pair of neighbors, i.e. a
variable and a factor. Note the number of the factors equals the number of the
pixels. We define the sequence number of each factor as the sequence number of
the pixel, which is the central one of the pixels connected to the factor.
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