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a b s t r a c t

We consider estimating the confidence and prediction intervals for semiparametric mixed-effect least
squares support vector machine (LS-SVM). Explicit formulas are derived for confidence and prediction
intervals. The accuracy of the derived analytical equations is assessed by comparing with wild cluster
bootstrap-t method on simulated and real-world data with different levels of random-effect and residual
variances, and different numbers of clusters. Close match between the derived expressions and the
bootstrap results is observed.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Significant correlations often exist between observations from
the same case, or subject, in datasets from scientific research. To
account for these correlations mixed-effect models are often used
to analyze such data including longitudinal data. Recently a semi-
parametric mixed effect model using least squares support vector
machine (LS-SVM) has been proposed [1,2]. Its performance has
been shown to be superior to NONMEM, a commonly used, phys-
ics-based mixed-effect model [3]. It is expected that this semipara-
metric mixed-effect model will find important applications in
various domains. For many real applications, while it is desirable
to know the uncertainty associated with modeling and prediction
in terms of confidence and prediction intervals, an effective analyt-
ical method of estimating such intervals for the semiparametric
mixed effect model for LS-SVM is yet to be developed. To this
end, this paper provides analytical expressions for the confidence
and prediction intervals for the LS-SVM based semiparametric
mixed-effect model. Our analytical expressions are expected to
facilitate the use of the semiparametric model in diverse fields.
The accuracy of the analytical equations is demonstrated on simu-
lated and real-world data by using the wild cluster bootstrap-t
method.

In deriving the analytical expressions we first show the
semiparametric mixed-effect LS-SVM estimate can be explicitly

formulated as a linear smoother. Based on the closed-form expres-
sion of the smoothing vector, we then derive closed-form expres-
sions of the bias and variance at any point of interest e.g. design
points and prediction points. For variance estimation at any point,
we use the approach of first estimating the variance at the design
points with residual maximal likelihood estimation (REML) which
is achieved by converting the semiparametric mixed-effect model
to an equivalent linear mixed-effect model, and then combining
the variances at the design points with the corresponding linear
smoothing vector. The closed-form expressions for the uncertainty,
including the bias and variances, as well as the approach to vari-
ance estimation are novel.

This paper adopts the following notation. Scalars and vectors are
denoted by lower letters, and matrices by capital letters. A vector or
a matrix is explicitly defined as it first appears. Script letters
denote spaces, in particular,Rk denotes k-dimensional space of real
numbers. The notation of ð�Þi denotes the ith element of a vector.
We use diagðxÞ to denote a k� k diagonal matrix whose diagonal
vector is x 2 Rk, or diagðXÞ to denote a k� 1 diagonal vector when
X 2 Rk�k. We use 0k�l (1k�l) to denote a k by l matrix of zeros (ones).
The symbol � denotes the outer product and h�; �i inner product.
The notation Nkðm;RÞ denotes a multivariate Gaussian distribution
with mean vector m 2 Rk and variance matrix R 2 Rk�k.

The rest of the paper is organized as follows. Relevant studies
are briefly reviewed in Section 2. Section 3 reviews the semipara-
metric mixed-effect LS-SVM model. The expressions for confidence
and prediction intervals are derived in Section 4. Numerical results
showing the accuracy of derived expressions are presented in
Section 5. Section 6 concludes this paper.
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2. Related work

Linear mixed-effect models are standard for analyzing longitu-
dinal data, where the random effects are often estimated based on
the theory of the best linear unbiased prediction (BLUP) [4]. For
particular applications such as pharmaceutical experiments [3],
nonlinear mixed effect models have been widely in use based on
domain-specific models. Bootstrap based resampling methods for
estimating the confidence and prediction intervals have been
developed for statistical applications. The bootstrap-t procedure,
also known as a percentile-t procedure, was first proposed by Efron
[5]. The wild bootstrap was introduced for regression on non-
clustered data [6], and later extended to a clustered setting [7].
The extended version is known as the wild cluster bootstrap-t
procedure. Bootstrap procedures are simple yet effective; however,
they provide little insight into how uncertainty depends on the
variance components.

LS-SVM was first introduced as a kernel machine learning
method alternative to SVM [8]. The confidence and prediction
intervals for LS-SVM without random effects have been estimated
analytically in [9]. Based on LS-SVM, a non-parametric mixed-
effect LS-SVM model has recently been introduced in [1,2,10].
To our best knowledge, analytical expressions for confidence
and prediction intervals, specific to the mixed effect LS-SVM
model, have not been derived. This is the focus of the current
paper.

3. Review of semiparametric mixed effect LS-SVM model

Assume there are i ¼ 1; . . . ;N subjects or cases, and for each
subject i there are j ¼ 1; . . . ;ni observations with response vari-
ables yij, fixed-effect covariate vectors xij 2 Rp and random-effect
covariate vectors zij 2 Rq. For a semiparametric model, let
xij ¼ ðxt

1ij; x
t
2ijÞ

t be partitioned into two sub-vectors with x1ij 2 Rp1

corresponding to linear fixed effects and x2ij 2 Rp2 corresponding
to nonlinear fixed effects. The following semiparametric mixed-ef-
fect LS-SVM model is considered [1,2]:

yij ¼ b0 þ btx1ij þwt/ðx2ijÞ þ bt
i zij þ �ij; j ¼ 1; . . . ;ni; i ¼ 1; . . . ;N;

ð1Þ

where b0 is the intercept term, b 2 Rp1 is the regression parameter
vector, /ðx2ijÞ is a nonlinear feature mapping function which corre-
sponds to the nonparametric part of model, bi � Nqð0;BiÞ is the ran-
dom-effect parameter vector, and �i ¼ ð�i1; . . . ; �ini

Þt � Nni
ð0;RiÞ are

error vectors. In this semiparametric mixed-effect model, covari-
ance matrices Bi and Ri are assumed to be known or can be esti-
mated (e.g., using REML).

To estimate the model (1), the following optimization problem
is defined,

minw;b0 ;b;bi ;�ij

1
2

wtwþ k1

2

XN

i¼1

bt
i B
�1
i bi þ

k2

2
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Xni

j;k¼1

�t
ijR
�1
ijk �ik; ð2Þ

subject to the equality constraints given in Eq. (1) for all j ¼ 1; . . . ;ni

and i ¼ 1; . . . ;N.
The Lagrangian function for (2) is given as by

L ¼ 1
2

wtwþ k1
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XN
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þ
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aijðyij � b0 � btx1ij �wt/ðx2ijÞ � bt
i zij � �ijÞ; ð3Þ

where aij are Lagrange multipliers. By using the optimality
conditions and the so-called ‘‘kernel trick’’ of h/ðx2ijÞ;
/ðx2klÞi ¼ Kðx2ij; x2klÞ, the following system of linear equations can
be obtained:

0ðp1þ1Þ�ðp1þ1Þ �Xt
1

�X1
�W

 !
�b

a

 !
¼

0ðp1þ1Þ

�y

� �
; ð4Þ

here �b ¼ ðb0;b
tÞt;a ¼ ðat

1; � � � ;at
NÞ

t with ai ¼ ðai1; � � � ;aini
Þt , �y ¼

ðyt
1; � � � ; yt

NÞ
t 2 RNn with yi ¼ ðyi1; � � � ; yini

Þt and Nn ¼
PN

k¼1nk,
�X1 ¼ ð1Nn ;X1Þ

where X1 2 RNn�p1 represents the matrix obtained by stacking xt
1ij’s,

and

W ¼ K þ 1
k1

~Z~B~Zt; �W ¼W þ 1
k2

~R; ð5Þ

where K 2 RNn�Nn is the kernel matrix consisting of Kðx2ik; x2ilÞ with
k; l ¼ 1; . . . ;ni and i ¼ 1; . . . ;N; ~Z ¼ diagðZ1; . . . ; ZNÞ is a Nn � qN
block-diagonal matrix with Zi ¼ ðzi1; . . . ; zini

Þt; ~B ¼ diagðB1; . . . ; BNÞ
is a qN � qN block-diagonal matrix, ~R ¼ diagðR1; . . . ;RNÞ is a
Nn � Nn block-diagonal matrix.

Now consider an input with covariates ðx�; z�Þ, which is either a
training example or a new (test) example. By using the estimated
values for �̂b, â from Eq. (4), the resulting mixed-effect LS-SVM
regression equation is obtained [1,2]:

ŷðx�; z�Þ ¼ b̂0 þ b̂tx1� þ
XN

i¼1

Xni

j¼1

âijKðx2ij; x2�Þ þ b̂t
i z�

 !
; ð6Þ

where b̂i ¼ 1
k1

BiZ
t
i âi.

4. Derivation of confidence and prediction intervals

At any given covariate vector ðx; zÞ 2 Rp �Rq, after accounting
for both fixed and random effects, we assume the response y is pro-
duced by the following model

yðx; zÞ ¼ mðx; zÞ þ rðx; zÞ�; ð7Þ

where Eð�Þ ¼ 0; Varð�Þ ¼ 1, and ðx; zÞ and � are statistically inde-
pendent. Under mild regularity conditions � can be modeled as a
standard normal random variable thanks to the law of large num-
bers, but for derivations in this section, we consider �with a general
distribution. To derive the confidence intervals for the estimator
m̂ðx; zÞ, we need to find a bound hg such that

Probðsup
x;z
jm̂ðx; zÞ �mðx; zÞj 6 hgÞP 1� g; ð8Þ

where g 2 ð0;1Þ.

4.1. Bias estimator for semiparametric mixed-effect LS-SVM regression

To derive analytical equations of the confidence and prediction
intervals, it is important to obtain the bias of the estimator and cor-
rect such a bias. Compared to the bootstrap procedures [11,12],
using analytical formulas for confidence and prediction bands is
computationally efficient and provides more insights into the
uncertainty associated to the estimator. Extending the definition
used in [9], we first show that the semiparametric mixed-effect
LS-SVM regression is a linear smoother as follows.

Definition IV.1. (Linear Smoother). An estimator m̂ of a mixed-
effect regression function m is a linear smoother if, for each fixed-
effect covariate x 2 Rp and random-effect covariate z 2 Rq, there
exists Lðx; zÞ ¼ ðl1ðx; zÞ; . . . ; lNn ðx; zÞÞ

t such that

m̂ðx; zÞ ¼ Ltðx; zÞ�y; ð9Þ

where liðx; zÞ : Rp �Rq ! R, and �y is as defined above.
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