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a  b  s  t  r  a  c  t

In  this  study,  the  CuCr1−xO2 films  with  x  =  0.00–0.25  were  prepared  on  a  quartz  substrate  by sol–gel
processing.  The  films  were  first  deposited  onto  a  quartz  substrate  by spin-coating.  The  specimens  were
annealed  at  500 ◦C  in  air  for  1  h  and  post-annealed  in  N2 at  700 ◦C  for 2 h.  As  the  films  were  post-annealed
in  N2, a pure  delafossite-CuCrO2 phase  appeared  in the  CuCr1−xO2 films  below  x  = 0.20.  However,  an
additional  CuO  phase  appeared  at x =  0.25.  The  pure  delafossite-CuCrO2 phase  can  exist  within  x  ≤ 0.20
in  CuCr1−xO2 films.  The  binding  energies  of  Cu-2p3/2 and  Cr-2p3/2 in  the  CuCr1−xO2 films  with  the  pure
delafossite-CuCrO2 phase  were  932.1  ±  0.2  eV  and  576.0  ±  0.2  eV,  respectively.  The  surface  exhibited  elon-
gated  grain  features  when  the  pure  delafossite-CuCrO2 phase  was  present  in  the CuCr1−xO2 films.  The
maximum  transmittance  of the  CuCr1−xO2 films  with  the  pure  delafossite-CuCrO2 phase  was  approx-
imately  80%, which  moved  toward  the visible  region  with  the  increasing  x-value.  The  film  absorption
edges  were  observed  at 400  nm,  which  were  sharper  with  the  increasing  x-value.  The  optical  bandgaps  of
CuCr1−xO2 films  with  the  pure  delafossite-CuCrO2 phase  were  approximately  3.0  eV. The  electrical  con-
ductivity  of  CuCr1−xO2 films  with  the  pure  delafossite-CuCrO2 phase  was  1.1  ×  10−3 S cm−1 (x =  0.00),  and
increased  to  0.16  S cm−1 (x =  0.20).  The  corresponding  carrier  concentration  of  CuCr1−xO2 films  with  the
pure  delafossite-CuCrO2 phase  was  2.8 × 1014 cm−3 (x  =  0.00),  and  markedly  increased  to  1.8  × 1016 cm−3

(x  =  0.20).  The  Cr-deficient  condition  in delafossite-CuCrO2 films  enhances  film  electrical  conductivity
and  carrier  concentration,  but  retains  the  film’s  high-visible  transparency.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Delafossites are p-type wide-bandgap oxide semiconductors
that have recently become attractive because of their optoelec-
tronic applications [1–3]. Wide-bandgap oxide semiconductors can
be used for transparent conducting oxides (TCOs) that possess elec-
trical conductivity and optical transparency in a single material
[1]. TCOs have numerous potential applications, including solar
cells, flat panel displays, electromagnetic shielding devices, light-
emitting diodes, and transparent heat sources. Currently, the most
popular wide-bandgap TCOs, such as ZnO, In2O3, and SnO2, exhibit
n-type characteristics; other p-type wide-bandgap TCOs are not
well established, and have not been examined until recently [1–3].
Among the Cu-based delafossites, CuCrO2 has higher electrical con-
ductivity than the others [1].

Different thin-film deposition techniques have been employed
for delafossite materials deposition since the successful prepara-
tion of p-type CuAlO2 films [3].  CuCrO2 films can be deposited
using thin-film deposition techniques such as pulsed laser
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deposition [4–8], sputtering [9,10],  chemical vapor deposition
[11–13],  and the sol–gel method [14–16].  However, the vacuum-
based processes are complex and time consuming. By contrast, the
chemical solution method of preparing the TCOs films has numer-
ous advantages, including low-cost, easy set-up, large-area coating,
and mass production. Previous research has shown the sol–gel
method to be a powerful technique for growing delafossite thin
films [14–16].  In particular, sol–gel processing can easily manipu-
late film stoichiometry.

A major concern issue in p-type wide-bandgap delafossite films
is their much lower electrical conductivities compared to the
n-type. Therefore, improving film electrical conductivity is neces-
sary. Cation doping has been documented to improve delafossite
conductivity [8,9,12,17,18],  but it reduces optical transparency.
Mg-doped CuCrO2 films have a conductivity of 220 S cm−1, but
film optical transparency has a transmittance of 30% in the visual
region [8].  Varying film stoichiometry enhances p-type conduc-
tivity because delafossite stoichiometry may  change the defect
chemistry that plays an important role in the conductivity of the
structure [18–21].  Ingram et al. [18,19] showed the significant
effect of Cu/Al stoichiometry on CuAlO2 conductivity. Ashmore and
Cann [20] prepared non-stoichiometric CuxGaO2 (x = 1.05–0.96)
polycrystalline ceramics using solid-state reaction methods, and
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found that both the conductivity and the activation energy do not
vary with the Cu content of CuxGaO2.

No research has focused on Cr-stoichiometry in delafossite-
CuCrO2 films. This study reports on CuCrO2 films with a Cr-deficient
condition prepared by sol–gel processing. The CuCr1−xO2 film
microstructure was characterized by grazing-incidence X-ray
diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and
field-emission scanning electron microscope (FE-SEM). The optical
properties of CuCr1−xO2 films were measured using an ultraviolet-
visible (UV-Vis) spectrometer, and film electrical properties were
investigated using the Hall-effect measurement. We  also discuss
the possible conductivity mechanism of CuCr1−xO2 films related to
defect.

2. Experimental details

The CuCr1−xO2 films on a quartz substrate were prepared
by spin-coating and two-step annealing. Copper(II) acetate
(0.02 mol, purity 98%, Showa, Japan) and chromium(III) acetate
(0.012–0.02 mol, EP grade, Showa, Japan) were first dissolved in
80 mL  ethanol, and 0.03 mol  triethanolamine (purity 95%+, Tedia,
USA) was then added to the solution. This precursor, with the
desired stoichiometric ratio, was then spin coated onto quartz sub-
strates at 1000 rpm for 15 s. The specimens were then annealed at
500 ◦C in air for 1 h at a ramp rate of 5 ◦C/min before the next cycle.
Three cycles were performed in this study. The specimens were
post-annealed at 700 ◦C in flowing nitrogen gas (purity 99.9%) for
2 h at a ramp rate of 5 ◦C/min.

A Bruker D8 Discover SSS X-ray diffractometer operating with
Cu-K� radiation (� = 0.154 nm)  at 40 kV and 40 mA  was  used to
determine changes in the crystal structure. The operating mode was
a grazing-incidence with an incidence angle of 1◦ and a sample step
size of 0.01◦ within the range of 2� = 10–70◦. XPS was  performed
using a Physical Electronics ESCA PHI 1600 spectrometer equipped
with an Omni Focus III lens. The exciting X-ray source for XPS was
Mg  K� (h� = 1253.6 eV). Prior to the measurement, the surface was
sputter-cleaned using an Ar ion gun operated at 3 keV for 2 min. The
Cu-2p, Cr-2p, and O-1s spectra were obtained at an energy interval
of 0.2 eV per step. All spectra were calibrated according to the C-
1s peak at 284.6 eV. The XPS spectra were fitted using a nonlinear
least squares fit with a Gaussian/Lorentzian peak shape (G/L mix-
ing ratio = 0.3) and the background was subtracted prior to each
fitting routine. The film’s surface morphology was  analyzed using
FE-SEM (JEOL JSM-6700F). Optical properties were measured using

Fig. 1. X-ray diffraction patterns of CuCr1−xO2 films with x = 0.00–0.25 (�:CuO and
•:CuCrO2).

a Perkin-Elmer Lambda 35 UV-Vis spectrometer. The electrical con-
ductivity, carrier type, and carrier concentration of the CuCr1−xO2
films were measured using a standard Hall-effect measurement.

3. Results and discussion

3.1. GIXRD analysis

GIXRD analysis was performed on the CuCr1−xO2 films with
x ≤ 0.25, as shown in Fig. 1. Strong delafossite-CuCrO2 (R3m, JCPDS
#89-6744) diffraction peaks are observable in the pattern, which
are (0 0 6), (0 1 2), (1 0 4), (0 1 8), (1 1 0), and (0 0 2), respectively.
The pure CuCrO2 phase is observable in the CuCr1−xO2 films below
x = 0.2. An additional CuO phase exist at x > 0.2 in the CuCr1−xO2
films. The values of the full width at half-maximum (FWHM)
of the diffraction peaks are narrow, indicating good crystallinity
in the CuCr1−xO2 films. This suggests that the pure delafossite-
CuCrO2 phase can be stabilized between x = 0.00 and x = 0.20 in the
CuCr1−xO2 films. Hence, we  used the (1 0 4) diffraction peak to cal-
culate the film’s crystallinity. The crystallinity of CuCr1−xO2 films
was  18 nm (x = 0.00), 20 nm (x = 0.05), 18 nm (x = 0.10), and 19 nm

Fig. 2. X-ray photoelectron spectra of CuCr1−xO2 films with x = 0.00–0.20: (a) Cu-2p and (b) Cr-2p.
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