ARTICLE IN PRESS

Applied Surface Science xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Self-assembled Bi₂MoO₆/TiO₂ nanofiber heterojunction film with enhanced photocatalytic activities

Hua Li^a, Tianxi Zhang^b, Chao Pan^a, Chenchen Pu^a, Yang Hu^a, Xiaoyun Hu^b, Enzhou Liu^{a,*}, Jun Fan^{a,*}

^a School of Chemical Engineering, Northwest University, Xi'an 710069, PR China ^b School of Physics, Northwest University, Xi'an 710069, PR China

ARTICLE INFO

Article history: Received 15 May 2016 Received in revised form 27 June 2016 Accepted 27 June 2016 Available online xxx

Keywords: Bi₂MoO₆/TiO₂ Heterojunction Light scattering Self-assembled

ABSTRACT

TiO₂ nanofiber film (TiO₂ NFF) was successfully fabricated by an ethylene glycol-assisted hydrothermal method, and then self-assembled flake-like Bi₂MoO₆ was grown on the surface of TiO₂ nanofiber under alcohol thermal condition. The investigations indicate that the nanofiber structure of TiO₂ films exhibits excellent visible light scattering property, the scattering light overlaps with the absorption band of Bi₂MoO₆, which can enhance the utility of incident light. The prepared Bi₂MoO₆/TiO₂ composites show obviously enhanced photocatalytic activity for methylene blue (MB) degradation compared with pure TiO₂ nanofiber under visible light irradiation ($\lambda > 420$ nm). The enhanced photocatalytic activity is primarily attributed to the synergistic effect of visible light absorption and effective electron-hole separation at the interfaces of the two semiconductors, which is confirmed by photoluminescence (PL) and electrochemical tests.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The development of semiconductor photocatalysis has been considered as the most promising method to solve the energy shortages and environmental-related problems [1,2]. Over the past few decades, TiO₂-based semiconductors have attracted a great deal of attention in photocatalysis field, for their strong oxidizing power, nontoxicity, and environmentally friendly feature [3–8]. However, the application of TiO₂ is greatly limited by the fast recombination of electron/hole pairs and narrow light-absorption range [9–15]. Therefore, many efforts have been already employed to overcome the aforementioned problems, such as element doping, surface photosensitization, structural control and so on [16–20].

It has been proved that narrow-band gap semiconductor combination is an effective strategy for restraining the recombination of the electrons and holes and extending light absorption range [21–28]. Among the various photocatalysts, Bi₂MoO₆ semiconductor with a typical band gap of about 2.75 eV, has sparked considerable interest of researchers for their layer structures,

* Corresponding authors.

E-mail addresses: liuenzhou@nwu.edu.cn, ok.208@163.com (E. Liu), fanjun@nwu.edu.cn (J. Fan).

http://dx.doi.org/10.1016/j.apsusc.2016.06.167 0169-4332/© 2016 Elsevier B.V. All rights reserved. excellent intrinsic physical and chemical properties [29]. More importantly, Bi_2MoO_6 have suitable band edges, which can match well with TiO₂ to form a heterojunction photocatalyst. Zhang et al. [30] prepared one-dimensional Bi_2MoO_6/TiO_2 hierarchical heterostructure by a combination of electrospinning and a solvothermal technique, which possessed a much higher degradation rate of Rhodamine B than the unmodified TiO₂ nanofiber and Bi_2MoO_6 under UV and visible light. In addition, Tian et al. [31] prepared 3D Bi_2MoO_6 nanosheet/TiO₂ nanobelt heterostructure by a simple hydrothermal method, which possesses high photocatalytic oxygen production with a rate of 0.668 mmol h^{-1} g⁻¹, and shows an enhanced photoelectochemistry performance under irradiation of solar illumination.

In our previous studies, an overlapped light trapping phenomenon was observed in Au/TiO₂ nanofiber film due to the visible light scattering nanostructures of TiO₂ film and the surface plasmon resonance of Au nanoparticles, the investigations reveal that the overlapped light-trapping nanostructures can greatly improve the photocatalytic activity of a composite system. Jiang et al. [32] demonstrated that dye sensitized solar cells with the TiO₂ nanospindles as light scattering layer show a 27% increment of energy conversion efficiency compared to that of P25 single layer film. Wang et al. [33] introduced the TiO₂ hollow sphere's scattering layer in quantum dot-sensitized solar cells and achieved a notable 10% improvement of solar-to-electric conversion efficiency. Based

Please cite this article in press as: H. Li, et al., Self-assembled Bi₂MoO₆/TiO₂ nanofiber heterojunction film with enhanced photocatalytic activities, Appl. Surf. Sci. (2016), http://dx.doi.org/10.1016/j.apsusc.2016.06.167

H. Li et al. / Applied Surface Science xxx (2016) xxx-xxx

on the above understanding, TiO₂ nanofiber film with remarkable visible light scattering ability can be employed as a proper light harvesting layer to achieve an overlapped light trapping nanostructures, which may provide a strong interaction between Bi₂MoO₆ and TiO₂ photocatalyst.

In this paper, TiO₂ nanofiber films were prepared using a hydrothermal method with ethylene glycol as a morphologycontrolling agent. Subsequently, self-assembled flake-like Bi₂MoO₆ was grown on the surface of TiO₂ nanofiber under alcohol thermal condition to obtain the Bi₂MoO₆/TiO₂ heterostructure photocatalysts. The investigations indicate that the nanofiber structure of TiO₂ films exhibit excellent visible light scattering property, the scattering light overlaps with the absorption light of Bi₂MoO₆, which can enhance the utility of incident light. What is more, the photocatalytic performance of samples was evaluated by degradation MB, the results indicated that the composite heterostructure exhibited a much higher degradation rate of MB than the unmodified TiO₂ nanofiber under visible light illumination. In addition, the mechanism of enhanced photocatalytic activity over Bi₂MoO₆/TiO₂ heterojunction was also proposed.

2. Experimental details

2.1. Preparation of TiO₂ nanofiber film (TiO₂ NFF)

TiO₂ nanofiber films were prepared using a hydrothermal method. First, 2g of NaOH was dissolved in a mixture containing 25 mL of H₂O and 25 mL of HOCH₂CH₂OH. The resulting solution and the surface-polished Ti sheet (>99.5% purity, 2.1 mm \times 4.2 mm \times 0.5 mm) were maintained at 180 °C for 24 h. After cooling down naturally, the product was cleaned with water and immerged in 0.25 wt% HCl aqueous solution for 24 h, then washed with water again. Finally, it was annealed at 400 °C for 2 h with a heating rate of $5 \circ C/min$ to obtain the TiO₂ NFF.

2.2. Preparation of Bi₂MoO₆/TiO₂ film

Bi₂MoO₆/TiO₂ composite films were prepared through alcohol thermal method.First, Bi(NO₃)₃ 5H₂O and Na₂MoO₄ 2H₂O with molar ratio (Bi/Mo) of 2:1 were dissolved in a mixture containing 20 mL of ethylene glycol and 50 mL of ethanol respectively. Subsequently, the resulting solution and TiO₂ NFF were heated at 160 °C for 5 h. After the reaction, the products were washed with water and ethanol to remove residual. Finally, y Bi₂MoO₆/TiO₂ films were obtained after drying in an oven at 60 $^{\circ}$ C for 12 h (y representing the apparent Bi_2MoO_6 dosage, y = 0.02, 0.04, 0.06, 0.08, and 0.10 mmol in this work).

The phase structure of the samples was characterized by a Shimadzu XRD-6000 powder diffractometer. The morphologies of the samples were characterized by a scanning electron microscopy (SEM, JEOL JSM-6390A system). X-ray photoelectron spectroscope (XPS, Kratos AXIS NOVA spectrometer) was performed to examine the surface properties and composition of the sample. The UV-vis diffuse reflectance spectra were obtained on a Shimadzu UV-3600 UV/Vis/NIR spectrophotometer. Photoluminescence (PL) spectra were collected on a florescence spectrophotometer (Hitachi F-7000).

2.4. Photocatalytic experiments

Methylene blue (MB, 50 mL, 5 mg/L) was selected as the target pollutant for evaluating the photocatalytic activity of Bi₂MoO₆/TiO₂ film, since it is a typical azo dye and hard to decompose. A 300 W

Fig. 1. XRD patterns of pure TiO₂ nanofiber, sample 0.02 Bi₂MoO₆/TiO₂, 0.04 Bi2MoO6/TiO2, 0.06 Bi2MoO6/TiO2, 0.08 Bi2MoO6/TiO2, 0.10 Bi2MoO6/TiO2 and Bi₂MoO₆

Xe-lamp equipped with a 420 nm cutoff filter was used as light source (Beijing Perfectlight Technology Co. Ltd., China, Microsolar 300UV, visible light: 17.6 W). The sample was added into MB solution. Before illumination, the mixture was kept in darkness with a magnetic stirring for 30 min to establish adsorption-desorption equilibrium of MB. Subsequently, air was continuously bubbled through the system. At regular intervals of 20 min, 2 mL of the mixed suspensions were extracted and centrifuged to remove the photocatalysts. The supernatant solution was analyzed by a Shimadzu UV-3600 UV/Vis/NIR spectrophotometer and the absorption peak at 664 nm was monitored. The degradation efficiency was calculated as follows:

$$\eta = (C_o - C)/C_o \times 100\%$$

where, C_o is the absorbance of original MB solution and C is the absorbance of the MB solution after light irradiation.

The photocatalytic process can be expressed as the following equation:

$\ln C_0 / C = kt$

where, k is the apparent pseudo-first-order rate constant.

2.5. Photoelectrochemical measurements

Photocurrent density was measured in a standard three electrode system (CHI 660E) with as-prepared samples as the working electrode, in which a platinum wire and a saturated calomel electrode (SCE) were used as the counter and reference electrodes. 0.5 M Na₂SO₄ aqueous solution was applied as the electrolyte. The I-t curves were measured under irradiation from a solar stimulation source (Zolix, 150 W, AAA) with light on-off switches of 10 s.

3. Results and discussion

The crystal structure and phase composition of the prepared TiO_2 , Bi_2MoO_6/TiO_2 and Bi_2MoO_6 samples are shown in Fig. 1. For the TiO₂ nanofiber, two characteristic peaks at 25.30° and 48.38° well correspond to the (101) and (200) crystal planes of anatase phase TiO₂ (JCPDS 21-1272), respectively. The intense diffraction peaks at 38.89°, 40.59°, and 53.62° belong to the Ti substrate under the TiO₂ nanofiber film. The Bi₂MoO₆ displays several diffraction peaks at 28.29°, 32.53°, 46.65°, 55.29°, and 58.58°, which can be indexed to the characteristic peaks of the orthorhombic structure of Bi₂MoO₆ (JCPDS 76-2388). Besides, the peaks in the composites

2.3. Characterization

Please cite this article in press as: H. Li, et al., Self-assembled Bi₂MoO₆/TiO₂ nanofiber heterojunction film with enhanced photocatalytic activities, Appl. Surf. Sci. (2016), http://dx.doi.org/10.1016/j.apsusc.2016.06.167

2

Download English Version:

https://daneshyari.com/en/article/5355010

Download Persian Version:

https://daneshyari.com/article/5355010

Daneshyari.com