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a  b  s  t  r  a  c  t

During  deposition  on  surfaces  of highly  anisotropic  diffusion,  nucleation  behaves  as  it  would  on  a  one-
dimensional  substrate,  or effectively  deposition  in two-dimensions  (2D).  This Article  reports  a close-form
theory  for  nuclei  separation  during  physical  vapor  deposition  in 2D. In  comparison  and  contrast,  this
closed-form  theory  agrees  with  existing  theories  in  scaling,  but gives  the  coefficient  that  was previously
unknown.  Further,  this  theory  shows  that the nuclei  separation  in  2D  is  an order-of-magnitude  larger  than
in three  dimensions.  The  insights  from  such  comparison  and  contrast  are  critical  in  analyzing  nucleation
on  surfaces  of  various  anisotropy.

©  2016  Published  by  Elsevier  B.V.

1. Introduction

Nucleation of atomic clusters on a solid substrate is generic in
many surface processes, such as physical vapor deposition (PVD). As
shown in Fig. 1, the area density of nuclei first increases with depo-
sition time or coverage, reaches a maximum, and then decreases
as some nuclei start to merge. Under glancing angle PVD on a
non-wetting substrate, the merge of nuclei can be avoided and
nanorods develop. As a result, the nuclei separation at the maxi-
mum  area density also defines the separation of nanorods, and is
called the critical separation. This quantity of critical separation has
been exhaustively investigated, for example references [1,2]. How-
ever, this line of thinking has not led to an analytical or closed-form
theory of the critical separation.

An analytical or closed-form theory of the critical nuclei sepa-
ration becomes possible, as we think and formulate in a different
phase space; shown in Fig. 1. In the new phase space, one variable
is the separation of existing nuclei on a substrate. As the separa-
tion increases, the other variable − the nucleation probability of
forming additional clusters on the substrate − goes from 0 to 1. The
critical separation is the separation at which the nucleation proba-
bility sharply transitions from 0 to 1. Following this logic, we have
obtained a closed-form theory of the critical separation in three
dimensions (3D) [3], and further used it to guide the experimental
realization of the smallest and well-separated nanorods from PVD
[4].
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It might appear illogical to develop a closed-form theory in 2D,
when it is already available in 3D. However, that appearance is
incorrect here. There are two good reasons for this investigation in
2D. First, surface diffusion can be highly anisotropic on some crys-
talline surfaces such as on the 2 × 1-dimer-reconstructed Si {001}
surfaces [5]. In this case, nucleation is dominated by atomic dif-
fusion along one dimension of the surface and atomic deposition
along the other dimension − that is, the theory in 2D applies. Sec-
ond, 2D atomistic simulations are still useful because of their reach
to larger length and longer time scales than 3D atomistic simula-
tions. To properly appreciate the simulation results, it is important
to be able to analytically comprehend the order-of-magnitude dif-
ferences between physical quantities in 2D and those in 3D.

In this Article, we  first derive the closed-form theory of the crit-
ical separation of nuclei in 2D. Then we  use lattice Kinetic Monte
Carlo (KMC) simulations to verify the theory. By comparison and
contrast of the two  analytical theories in 2D and 3D, we  show that
under typical PVD conditions the average separation of nuclei in 2D
is an order of magnitude larger than in 3D.

2. Closed-form theory

In deriving the theory, we consider a representative nucle-
ation space x ∈

[
− L−D

2 , L−D
2

]
as shown in Fig. 2. Following the same

approach as in our previous report [3], we first derive the analyt-
ical expression of adatom concentration on a flat substrate. Based
on the concentration, we  then determine the nucleation probabil-
ity, and therefore the critical separation. Due to the different time
scales of deposition and diffusion, the adatom concentration n (x)
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Fig. 1. Schematic of area density of nuclei, which is normalized so the maximum
density is 1, as a function of coverage; and nucleation probability as a function of
separation of nuclei, which is normalized so the critical separation is 1.

Fig. 2. Schematic of deposition in 2D, with existing nuclei of diameter D and sepa-
ration L, and deposition rate F.

reaches a quasi-steady state between two deposition events [6,7].
Therefore, the governing diffusion equation is:

�

2
∇2n (x) + F = 0 (1)

where v is the adatom diffusion jump rate. The adatom concen-
tration n (x) is fractional and the length x is in unit of the nearest
neighbor distance (lattice unit). The deposition rate F is in unit of
monolayer per second (ML/s). The first boundary condition is that
the adatom concentration is zero near a nucleus, and the second
boundary condition is that there is no net flux at x = 0 due to sym-
metry. The adatom concentration under these boundary conditions
is:

n(x) = F

�

[(
L − D

2

)2
− x2

]
(2)

As previously shown [8], the conventional nucleation theory
does not apply here because only one adatom exists on the sur-
face most of the time. Instead, the nucleation probability per unit
length follows the lone-adatom-model (LAM) and is [9]:

p = �

�t
(3)

Here, the residence time per unit length � is the ratio between
the average adatom concentration and the deposition rate F, and

the time interval between two  consecutive deposition events �t is
1/ [F (L − D)]. The total nucleation rate is:

w = (L − D) pF = F2(L − D)4

6�
(4)

The total nucleation probability P is governed by dP/dt =
w (1 − P). Under the condition of no extra energy barrier for the
interlayer adatom transport, we have D = FLt.  During the deposi-
tion of one ML,  the space for nucleation goes from 0 to L, and the
nucleation probability is:

P = 1 − e
−
∫ 1

F
0

wdt = 1 − e− F
30�

L4 = 1 − e
−
(

L
L0

)4

with L0 =
(

30�

F

) 1
4

(5)

The constant in the exponent, L0, has been referred to as the
critical length; for example, critical separation [3] and critical island
size [9]. However, the measured critical separation may  be slightly
different from L0. In the following, we  will show that the difference
is a factor of 0.91. Based on the nucleation probability in Eq. (5), the
nucleation probability density in L space is:

dP

dL
= 4L3

L4
0

e
−
(

L
L0

)4

(6)

Over a large ensemble, the measured value of the critical sepa-
ration is:

Ls =
∫ +∞

0

L
dP

dL
dL = �

(
5
4

)
L0 ≈ 0.91

(
30�

F

) 1
4

(7)

where � (x) =
∫ +∞

0
e−t tx−1dtis the Gamma  function. The critical

separation so defined is the measured value and can be compared
directly with computer simulation or experimental results. It differs
from the constant L0 by a factor of 0.91; in 3D, this factor becomes
0.93 or �

(
7
6

)
. For consistency, we will from now on always refer

the critical separation to mean the measured value as in Eq. (7),
instead of the constant in the exponent as in Eq. (5).

We  note that the concept of nucleation probability as a function
of length has been employed for the case of nucleation on an island.
However, the concept had not been employed for the case of sepa-
ration between nuclei, before our recent report [3]. In comparison

with previous reports [8,10,11], Eq. (7) gives the same scaling �
F

1
4 . In

contrast, Eq. (7) also gives the coefficient 0.91(30)
1
4 , which was pre-

viously unknown. The validity of Eq. (7), particularly the coefficient,
will be verified using lattice KMC  simulations.

Fig. 3. Comparison of the closed-form theory and KMC  simulation results, with the
error bar representing the standard deviation.



Download English Version:

https://daneshyari.com/en/article/5355328

Download Persian Version:

https://daneshyari.com/article/5355328

Daneshyari.com

https://daneshyari.com/en/article/5355328
https://daneshyari.com/article/5355328
https://daneshyari.com

