Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Perspective article

Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

M. Mertens^{a,*}, M. Mohr^a, K. Brühne^a, H.J. Fecht^a, M. Łojkowski^b, W. Święszkowski^b, W. Łojkowski^c

^a Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm, Germany

^b Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland

^c Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland

ARTICLE INFO

Article history: Received 6 June 2016 Received in revised form 1 August 2016 Accepted 24 August 2016 Available online 27 August 2016

Keywords: Nanocrystalline diamond HFCVD Micropatterning Microbiological investigations

ABSTRACT

In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Microroughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in microbiological investigations. Multi-terminated arrays show identical surface roughness and at the same time differences in hydrophobicity. These arrays have been visualized with scanning electron microscopy (SEM) and lateral force microscopy (LFM).

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diamond and, in particular ultra nanocrystalline diamond (UNCD) is well known for its excellent mechanical, electrical and optical properties. This is already integrated in some applications and available in several hybrid products [1]. The UNCD layers presented in the present paper are created using a hot filament chemical vapor deposition (HFCVD) technique, which allows growing diamond films with a wide range of grain size, from polycrystalline diamond. Nanocrystalline diamond layers with grain size in the range of 10 nm are further called UNCD. The HFCVD technique allows upscaling of UNCD layers production with high efficiency. UNCD can be deposited on different suitable sub-

* Corresponding author.

E-mail address: michael.mertens@uni-ulm.de (M. Mertens).

strates which even can exhibit three dimensional surface elements. The surface of the substrate can be scaled up to several hundred square centimeters in size, which makes this technique flexible and therefore preferred in comparison with other diamond coating techniques. Primarily silicon wafers are used as substrate, but also quartz glass or carbide forming metals can be used. With changing growth parameter, for example by adding additionally other gases like oxygen, nitrogen, ammoniac or argon, it is possible to influence the grain size as well as the ratio between sp² to sp³ bonded carbon in the grown film [2]. The roughness of UNCD is in the nano-scale and can be influenced by the growth conditions [2]. The nano-roughness is dependent on the grain size, film thickness, grain orientation, texture or surface treatments. Another very interesting field of research is the chemical surface modification of diamond by plasma techniques. UNCD surface termination with hydrogen, fluorine or oxygen have been reported in [3–7], which only represents a few examples of the resent years. With fluorine or hydrogen termination surface shifts towards the

http://dx.doi.org/10.1016/j.apsusc.2016.08.130

0169-4332/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4. 0/).

hydrophobic regime, while oxygen termination makes the surface more hydrophilic. Careful control of UNCD surface termination can change the contact angle in wide range from 10° to 100° [8,9]. Diamond is chemically inert and is stable to almost any acids. Diamond is also known as a biocompatible material [10]. Biocompatibility is a broad area of research with different applications. Histocompatibility, hemocompatibility or even microbiological cell growth on diamond substrate are topics of interest [10–13]. Biocompatibility can be generally influenced by surface properties like hydrophobicity, roughness or stiffness [14,15]. UNCD is an extremely stiff with Young's modulus varying with grain size from around 400 GPa to around 750 GPa [16]. High stiffness and it consistency is a preferable surface for many cell subtypes, as it promotes stable cell, surface adhesion, and therefore cells spreading and proliferation [17]. Moreover UNCD offers the possibility to conduct research on substrates that have consistent roughness and stiffness along whole surface, and this parameters are not affected by softening or swelling by exposure to culture media, which is important for the reproducibility of results [18].

As we show in this work, by combining termination with photolithography it is possible to create hydrophilic-hydrophobic arrays referred here as multi-termination, which show identical surface roughness. Such arrays possess wide application in areas of: microfluidics, high-throughput screenings, drug testing or cell microarrays [19,20].

2. Experimental methods

UNCD films with a thickness of typically 1 μ m were grown on a silicon substrate by hot filament chemical vapor deposition (HFCVD). To induce the initial heterogeneous nucleation event for the diamond growth, the silicon substrate is appropriately seeded [1]. After seeding the substrate in a water bath with nanodiamonds it is placed in front of the tungsten filaments in the growth camber. For the growth of UNCD the most important parameters are gas composition of methane and hydrogen and the substrate temperature. In this case the methane/hydrogen gas flow was 3% and the substrate temperature was about 570 °C. The filament temperature of about 2000 °C leads to an activation of hydrogen to atomic hydrogen. One three inch silicon wafer was coated with about 1 μ m UNCD and then divided into three similar pieces. Directly after the growth process the diamond surface is hydrogen terminated, because of the hydrogen atmosphere present during the growth.

We used two different ways to generate an oxygen termination. The first one was the chemically modification of the surface by piranha acid ($(H2O2)_{0.33}$:(H2SO4)_{0.66}). This treatment leads to an oxygen termination on the surface and is often also used as cleaning process. Independent from the chemical approach the second way to generate an oxygen termination is an oxygen plasma process. The plasma is burned in a barrel reactor under room temperature conditions, with a typically process pressure of 0.1 mbar, a flow of 10 sccm O₂ and a power of 100 W with a frequency for the plasma modification of 13,56 MHz. The third investigated termination was fluorine. This surface termination can be also generated with plasma process in a barrel reactor. In this case a CF₄-gas is used, with a process pressure of 0.3 mbar and a gas flow of 50 sccm.

We attempted as well the realization of two different terminations on one UNCD-surface. A step towards this goal was to change a termination from hydrophobic fluorine termination to hydrophilic oxygen termination which we refer as retermination. This offers for example locally preferred living conditions for biological cells, which is interesting for microbiological investigations. We performed the retermination in a plasma process at room temperature. One sample was first fluorine terminated and then reterminated in pure oxygen plasma for 10 min.

In order to produce samples with both hydrophobic and hydrophilic terminations (multiple-terminations) we started from a fluorine terminated sample. With a photo-lithography process, the surface is partially covered with developed photoresist. In this case a typical image reversal photoresist (AZ-5214) was used, with a thickness of about $1\,\mu\text{m}$. After the photo-lithography process the sample is exposed to pure oxygen plasma. The photoresist works as protection for the fluorine termination. On the positions without protection the fluorine terminations gets removed within 5–10 min and replaced by an oxygen termination. Finally the resist on top of the fluorine terminations gets removed by using solvents, acetone and the developer AZ726 was used. Both solvents were previously tested on a fluorine terminated sample with no influence on hydrophobicity. Due to the used photo-lithography technique, multiple terminated - micropatterned areas can be realized in any desired size or geometry down to the micrometer range.

To record and to quantify the hydrophobicity the water contact angle φ for water was measured. This measurement method is based on the Young's equation

$$\cos(\phi) = \frac{\sigma_S - \sigma_{LS}}{\sigma_L},\tag{1}$$

which describes the relationship between specific surface energy of the solid σ_S , interfacial energy between solid and liquid σ_{LS} and surface energy of water σ_L . In the experiment water drops are placed on the diamond film. The water drops always have the same mass of water and the dropping height is also fixed. A camera takes pictures of these water drops, which is mounted on the same horizontal height than the sample surface. The water angle can be directly extracted from the picture and allows a quantitative comparison of hydrophobicity. To get statistics and to investigate secondary influences on hydrophobicity, this process is repeated on different positions on the sample.

The average grain size of the UNCD films was measured by means of X-ray diffraction using the Scherrer's formula was between 9 to 11 nm.

The surface termination was verified by means of X-ray photoelectron spectroscopy (XPS). An aluminum anode without monochromator was used. The measurement resolution was about 0.5 eV. The binding energy was calibrated using the signal of the Au 4f duplet from the sample holder. The spectrum was measured in the range of binding energies from 250 eV to 800 eV. Further, energy dispersive X-ray spectroscopy (EDX) measurements were done. The used acceleration voltage of 5 kV leads to a penetration depth of 300 nm.

Atomic Force Microscopy (AFM) Asylum Research MFP3D Bio was used to determine the surface roughness, and to perform Lateral Force Microscopy (LFM) to observe the differences in surface friction for different terminations. The friction between tip and surface is generated by surface roughness but also by the work of adhesion between tip and surface due to atomic interactions and therefore it can be used to image areas of different chemical properties [21]. The LFM signal corresponds to the torsion of the cantilever, caused by friction, when the cantilever slides on the sample surface in lateral direction [21]. Imaging was performed in contact mode in air. An Olympus RC800PSA cantilevers were used. Cantilevers were calibrated with GetRealTM algorithm implemented to AFM software provided by Asylum Research. The cantilevers spring constant ranged from 0,6 N/m to 0,7 N/m.

3. Results and verification

Fig. 1 shows the contact angle of the oxygen-, fluorine- and the hydrogen terminated diamond surface in one graph. The arithmetic average of about 20 positions on each sample, with a sample size of about 10 square centimeters is shown. Additionally the stan-

Download English Version:

https://daneshyari.com/en/article/5355378

Download Persian Version:

https://daneshyari.com/article/5355378

Daneshyari.com