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a b s t r a c t

Detection of anomalies is a broad field of study, which is applied in different areas such as data monitor-
ing, navigation, and pattern recognition. In this paper we propose two measures to detect anomalous
behaviors in an ensemble of classifiers by monitoring their decisions; one based on Mahalanobis distance
and another based on information theory. These approaches are useful when an ensemble of classifiers is
used and a decision is made by ordinary classifier fusion methods, while each classifier is devoted to
monitor part of the environment. Upon detection of anomalous classifiers we propose a strategy that
attempts to minimize adverse effects of faulty classifiers by excluding them from the ensemble. We
applied this method to an artificial dataset and sensor-based human activity datasets, with different
sensor configurations and two types of noise (additive and rotational on inertial sensors). We compared
our method with two other well-known approaches, generalized likelihood ratio (GLR) and One-Class
Support Vector Machine (OCSVM), which detect anomalies at data/feature level.

We found that our method is comparable with GLR and OCSVM. The advantages of our method com-
pared to them is that it avoids monitoring raw data or features and only takes into account the decisions
that are made by their classifiers, therefore it is independent of sensor modality and nature of anomaly.
On the other hand, we found that OCSVM is very sensitive to the chosen parameters and furthermore in
different types of anomalies it may react differently. In this paper we discuss the application domains
which benefit from our method.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The field of activity recognition has gained an increasing level of
interest driven by applications in health monitoring and assistance,
manufacturing and entertainment. In addition, given the advances
in portable sensing technologies and wireless communication
many of these systems rely on the fusion of the information from
(heterogeneous) sensor networks. In this framework, the detection
of anomalous (e.g. faulty or misbehaving) nodes constitute an
important aspect for the design of robust, resilient systems. Be-
sides activity recognition, anomaly detection (AD) is an important
issue in the fields of control systems, navigation, and time series
analysis. Generally, an anomalous pattern is one that is not desired
or not expected. Therefore it often decreases the system perfor-
mance or generates abnormal behavior in the data stream. It can
be due to sensor failure, signal degradation, environmental fluctu-
ations, etc. In most fields, such as health monitoring, a desirable
characteristic is to process the data stream online and get a real-
time anomaly detection to take an appropriate counteraction.

As mentioned above, there is a tendency toward the use of
large number of sensors and with different sensor modalities to
have more information about the observed environment. In a pat-
tern recognition system, there are different levels to fuse sensor
information; data, feature, or classifier. Generally, the goal of data
fusion is to achieve more reliable data. Feature fusion concate-
nates different features from all the sensors before classification
(Fu et al., 2008). Classifier fusion is applicable when an ensemble
of classifiers is used and each classifier is assigned to different
subset of sensors, and finally, the decision is made by a combina-
tion of the classifier decisions (Ruta and Gabrys, 2000). This archi-
tecture allows for a decentralized classification system where
each classifier decides about a separate data stream. Therefore,
if a particular stream is faulty or misbehaving we can remove
the corresponding channel easily from the fusion in order to con-
tinue the classification, keeping the system performance as high
as possible. A good example of such systems is human activity
recognition (HAR) with on-body sensors mounted on specific
limbs. A good practice is to devote a distinct classifier to each
of the sensors (Roggen et al., 2011). In these systems, one inevita-
ble anomaly is the rotation or sliding of the sensors. If these
anomalies can be detected, it is easier to take an appropriate
counter-action for the misbehaving sensor, without the need of
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reconfiguring the whole system (Sagha et al., 2011a; Chavarriaga
et al., 2011). This desirable characteristic is the core feature of
Opportunistic activity recognition systems where elements in the
network may appear, disappear or change during life time
(Roggen et al., 2009).

Given a classifier ensemble, the anomaly detection process can
be applied at different levels; raw signal or feature level, or at clas-
sifier/fusion level. Hereafter, we call both raw and feature level as
low level and the detection process as Low Level Anomaly Detection
(LoLAD), while for the later case we name the process as Fusion Le-
vel Anomaly Detection (FuLAD). The former case is the most com-
monly applied (Chandola et al., 2009), however, it is often not
applicable as different sensor modalities may be available – requir-
ing to design specific AD for each modality – as well as the energy
and computational cost in the case of wireless sensor networks.
Therefore in this paper we introduce an anomaly detection mech-
anism at the level of classifier fusion, based on the consistency of
the classifier decisions. Applying the method on two human activ-
ity datasets, we show that, upon detection of anomalous classifiers,
an adaptation strategy such as removing them from the fusion
chain, leads to a graceful performance degradation.

The structure of the paper is as follows; the next section sum-
marizes related work on anomaly detection and resilience, then
we describe the proposed method in Section 3. The description of
the experiments and the results are presented in Sections 4 and
5, respectively. Finally, we discuss about the use of the method
and its pros and cons in Section 6, followed by a conclusion.

2. Related work

We can handle anomalies in two manners: through detection
and isolation, or by anomaly resilience and adaptation. In the for-
mer case, the goal is to detect whether there is an anomaly in
the data or not (detection) and which part of the system is affected
(isolation). While for the latter one, the system is designed to be
tolerant against anomalies, or to be able to take suitable counterac-
tion whenever an anomaly is detected. For example, by changing
the network structure in wireless sensor networks (WSN) or adapt-
ing parameters to the new data trend.

2.1. Anomaly detection and isolation

Numerous studies have been undertaken to detect anomalies at
the data level. Chandola et al. (2009) survey methods to detect
anomalous patterns in a pool of patterns. These methods (such as
computing distance to the nearest neighbor or to a cluster center,
estimating statistical models on the data, discriminating normal
and anomalous patterns using artificial neural networks, or support
vector machines) are used in fault detection in mechanical units
(Jakubek and Strasser, 2002), structural damage detection
(Brotherton and Johnson, 2001), sensor networks (Ide et al., 2007),
etc.

Time series change detection (Basseville and Nikiforov, 1993)
has been applied to fraud detection (Bolton et al., 2002), computer
intrusion detection (Schonlau et al., 2001) and concept drift (Lane
and Brodley, 1998). One of the well-known approaches is CUmula-
tive SUM (CUSUM) (Page, 1954) which is particularly used when
the parameters of the changed signal are known. CUSUM computes
the cumulative sum of the log-likelihood ratio of the observations
and once this value exceeds a threshold (which can be adaptive) it
is considered a change. It is widely used in change and drift detec-
tion in time series (Wu and Chen, 2006), exerting neuro-fuzzy
models (Xie et al., 2007), auto-regressive models (El Falou et al.,
2000), and Kalman filters (Severo and Gama, 2010) to generate
residuals whose changes should be detected. Li et al. proposed a

subspace approach to identify optimal residual models in a multi-
variate continuous-time system (Li et al., 2003).

When the parameters of the changed signals are unknown,
generalized likelihood ratio (GLR) (Lorden, 1971) and adaptive
CUSUM are proposed. GLR maximizes the likelihood ratio over pos-
sible values of the parameter of the changed signal, assuming the
normal data follows a Gaussian distribution. It is widely used for
change detection in brain imaging (Bosc et al., 2003), diffusion ten-
sor imaging for monitoring neuro-degenerative diseases (Boisgon-
tier et al., 2009), for detecting land mines using multi-spectral
images (Anderson, 2008), and target detection and parameter
estimation of MIMO radar (Xu and Li, 2007). In the same class,
Adaptive CUSUM is able to detect changes by suggesting a distribu-
tion for the unknown change model based on the distribution of
the known model of unaltered data (Alippi and Roveri, 2006a,b,
2008). One-Class Support Vector Machine (OCSVM) is another
common approach for anomaly detection (Das et al., 2011). Its
rationale is to compute a hyperplane around train data and sam-
ples are considered anomalous if they fall outside that hyperplane.

Other approaches have also been proposed in control systems to
detect abnormal sensors. One is to extract the model of the system
and detect faults by monitoring residual error signal (Hwang et al.,
2010). Another more complex way is to create the input–output
model of the system by regression methods and detect potential
faults when there is a change in the estimated parameters (Ding,
2008; Smyth, 1994).

There are many studies and methods toward detection of fault
and changes in the sensor networks. In this area, anomaly detec-
tion can be done by having redundancies in the network. Either
in the form of physical redundancy such as adding extra sensors,
thus increasing the cost of the system deployment; or from analyt-
ical redundancies (Betta and Pietrosanto, 1998). For instance,
Andrieu et al. (2004) discuss particle methods to model validation,
change/fault detection, and isolation. In this scope, model
validation is a process to ensure reliable operations. A survey on
the approaches to fault detection and isolation in unknown envi-
ronments has been done by Gage and Murphy (2010). Chen et al.
proposed a probabilistic approach that recognizes faulty sensors
based on the difference in the measurements of a sensor and its
neighbors (Chen et al., 2006). Other approaches are based on the
similarity between two time series (Yao et al., 2010), OCSVM
(Rajasegarar et al., 2007) and clustering (Rajasegarar et al., 2006)
to detect outliers in a sensor network, and kernel-based methods
(Camps-Valls et al., 2008) to detect changes in remote imaging
systems.

2.2. Anomaly resilience and adaptation

In sensor networks there are different strategies to introduce
robustness against changes and drifts in the sensors. Luo et al.
(2006) discuss how to optimize the parameters of the model of a
sensor under both noisy measurement and sensor fault. In turn,
Demirbas (2004) proposes scalable design of local self-healing for
large-scale sensor network applications, while Koushanfar et al.
(2002) propose to use an heterogeneous back-up scheme to substi-
tute faulty sensors. Other different designs, principles and service
managements have been proposed to provide self-healing services
and diagnosing the true cause of performance degradation
(Krishnamachari and Iyengar, 2003; Ruiz et al., 2004; Sheth et al.,
2005).

Alternatively, the system can be adapted to dynamic changes.
Snoussi and Richard (2007) model the system dynamics, including
abrupt changes in behavior, and select only a few active nodes
based on a trade-off between error propagation, communications
constraints and complementarity of distributed data. Wei et al.
(2009) used discrete-state variables to model sensor states and
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