Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

Nwe Ni Hlaing^{a,c,e,*}, K. Vignesh^{a,b,*}, Srimala Sreekantan^{a,*}, Swee-Yong Pung^a, Hirofumi Hinode^c, Winarto Kurniawan^c, Radzali Othman^d, Aye Aye Thant^e, Abdul Rahman Mohamed^f, Chris Salim^g

^a School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

^b Anano Sphere Sdn Bhd, Lorong Industri 11, Kawasan Industri Bukit Panchor, 14300 Nibong Tebal, Penang, Malaysia

^c Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

^d Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca, Malaysia

^e Department of Physics, University of Yangon, 11041 Kamayut, Yangon, Myanmar

^f Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

^g Department of Environmental Engineering, Surya University, Tangerang 15810, Banten, Indonesia

ARTICLE INFO

Article history: Received 21 July 2015 Received in revised form 12 December 2015 Accepted 15 December 2015 Available online 17 December 2015

Keywords: Nano-materials Ca(OH)₂ CTAB CO₂ adsorption

ABSTRACT

Calcium hydroxide (Ca(OH)₂) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)₂ based adsorbents for carbon dioxide (CO₂) capture. The effect of CTAB concentration (0.2–0.8 M) on the structure, morphology and CO₂ adsorption performance of Ca(OH)₂ was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG–DTA) techniques. The phase purity, crystallite size, Brunauer–Emmett–Teller (BET) surface area and CO₂ adsorption performance of Ca(OH)₂ precursor adsorbents were significantly increased when the concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)₂ precursor adsorbent possessed a residual carbonation conversion of ~56% after 10 cycles.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The combustion of fossil fuels from electricity generation or transportation is the major source for the emission of CO_2 greenhouse gas. Calcium looping is one of the potential methods to capture CO_2 [1–7]. Calcium oxide based material is used for CO_2 capture because of its advantages such as high CO_2 adsorption capacity, wide availability in natural minerals (e.g. limestone and dolomite), reversible carbonation/calcination reaction, and used

E-mail addresses: nwenihlaing76@gmail.com (N.N. Hlaing), vignesh134@gmail.com (K. Vignesh), srimala@usm.my (S. Sreekantan).

http://dx.doi.org/10.1016/j.apsusc.2015.12.121 0169-4332/© 2015 Elsevier B.V. All rights reserved. adsorbents can be replaced as raw material in cement manufacturing [8,9]. Calcium hydroxide (Ca(OH)₂) was investigated as one of the important candidates for high-temperature CO₂ capture [10–17]. However, the main drawback is the rapid decrease of adsorption performance during multiple cycles. This is mainly attributed to the sintering effect in each calcination step [18]. Therefore, the researchers have investigated on the synthesis of Ca(OH)₂ based adsorbents with high BET surface areas and mesopore size distribution to maintain the CO₂ adsorption capacity during multiple cycles [8,9,19–21]. The researchers have also focused on the system with low carbonation-decarbonation temperature for CO₂ capture [11,13,15,17,22–27]. The results are summarized in Table 1. The table clearly shows that most of the reactions were performed in the range of 700-800°C. Recently, Broda and Müller [28] studied the influence of calcination temperature on the CO₂ adsorption capacity CaO sorbents. They observed

^{*} Corresponding author at: School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.

Table 1

Summary of calcium based adsorbents and their operating temperature for CO₂ capture.

Material	Synthesis method	Temperature (°C)		Reference
		Carbonation	Calcination	
Al ₂ O ₃ -CaO	Co-precipitation	750	750	[22]
SiO ₂ -CaO	Mechanical mixing	800	800	[23]
Ca(OH) ₂	Commercial	620	805	[15]
Ca(OH) ₂	Commercial	620	850	[13]
CaO-MgO	Co-precipitation	700	700	[25]
CaO-MgO	Co-precipitation	750	750	[26]
ZrO ₂ -CaO	Flame spray pyrolysis/physical mixing	700	700	[27]
Zr-CaO	Ultrasound	750	750	[28]
CaO	Sol-gel assisted hydrothermal	800	800	[17]
Zr-Ce/Ca(OH) ₂	Co-precipitation	800	800	[11]

that high calcination temperature ($\geq 900 \,^{\circ}$ C) accelerated the thermal sintering of sorbent and reduced the CO₂ adsorption capacity during the cyclic use. Based on these findings, in this work the carbonation and calcination reactions were carried out at the same temperature (800 $^{\circ}$ C) in order to avoid the sintering of adsorbents between cyclic operations.

Cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)₂ precursor at low temperature (40 °C) via precipitation method. Ca(OH)₂ sorbents prepared using CTAB showed high CO₂ adsorption performance when compared to other precursor adsorbents [11-16,27,29]. Recently, few researchers prepared the Ca-based adsorbents by sol-gel method using CTAB to develop the CO₂ adsorption performances [27,29]. Radfarnia and Iliuta [27] reported that Zr-stabilized CaO adsorbent prepared with CTAB possessed high CO₂ adsorption capacity during cyclic use. Akgsornpeak et al. [29] studied the CO₂ adsorption capacity of CaO adsorbents prepared via sol-gel method by varying Ca²⁺/CTAB molar ratios. Generally, the combustion of CTAB in the temperature range of 200-500 °C gives rise to the micro/mesoporous channels, which will enhance the diffusion of CO₂ during carbonation process. Therefore the use of CTAB for the synthesis of Ca(OH)₂ improves and maintains the CO₂ adsorption performance during cvclic use. The previous studies demonstrated that CO₂ adsorption capacity of CaO based sorbents was increased in the presence of bromide dopants [30–33].

In this present work, we reported the effect of CTAB concentration on the phase purity, crystallite size, morphology, surface area, thermal property, CO_2 adsorption performance and cyclic stability of $Ca(OH)_2$ precursor adsorbent. It was observed that the CTAB concentration played an important role in the CO_2 adsorption performance of $Ca(OH)_2$ based sorbents.

2. Experimental

2.1. Synthesis of Ca(OH)₂ precursor adsorbent

The Ca(OH)₂ precursor adsorbent was synthesized using cationic *n*-hexadecyltrimethyl ammoniumbromide (CTAB) (Kanto Chemical Co., Inc.), sodium hydroxide (NaOH) (Wako Chemical Co., Inc.) and calcium acetate monohydrate (Ca(CH₃COO)₂·H₂O) (Wako Chemical Co., Inc.). All chemicals were of analytical grade and were used without further purification. Different concentrations of CTAB ranging from 0.2 M to 0.8 M were mixed with 1.6 M NaOH aqueous solution. Separately, this solution was heated to ~40 °C and vigorously stirred for 30 min. Then, 0.2 M of Ca(CH₃COO)₂·H₂O aqueous solution was added dropwisely. The formed white precipitates were centrifuged, washed several times with distilled water followed by ethanol and then dried in an oven at 70 °C for 24 h [11]. The samples were denoted as CH-2, CH-4, CH-6 and CH-8. The commercial Ca(OH)₂ sample was labeled as CC.

2.2. Characterization

The synthesized Ca(OH)₂ precursor adsorbent was characterized by the following techniques. The crystalline structures were characterized by X-ray diffraction (XRD) with a Rigaku X-Ray Diffractometer using Cu K α_1 radiation ($\lambda = 0.154056$ nm). The crystallite sizes were calculated using Scherrer equation $(D = 0.9 \lambda / \beta \cos \theta)$, where D is the crystallite size, λ is the X-ray wavelength, β is the full-width half-maximum and θ is the diffraction angle. The functional groups were investigated by a JASCO FTIR-6100 FV Fourier transform infrared spectroscopy (FTIR) in the range of $400-4000 \text{ cm}^{-1}$ with spectral resolution of 4 cm^{-1} . The surface morphologies were observed by a Carl Zeiss SUPRA 35 VP field emission scanning electron microscopy (FESEM). Thermal behavior was studied with the help of a Rigaku thermogravimetry analysis (TG–DTA) under N₂ gas flow. The Brunauer–Emmett–Teller (BET) surface areas were determined using three points N₂ adsorption isotherm (Quantachrome (Autosorb-1-MP) instrument).

2.3. CO₂ adsorption measurement

The carbonation/calcination performance of Ca(OH)₂ precursor adsorbents were carried out in a TG–DTA apparatus with Thermoplus 2 software. In this study, 800 °C was selected to conduct both carbonation and calcination reactions to avoid the repetitive heating and cooling of the samples between cyclic operations. Initially, a small amount of sample (~6.5 mg) was placed in a platinum crucible and heated to 800 °C at a ramp rate of 10 °C/min under N₂ gas flow. After reaching 800 °C, N₂ gas was changed to 100% CO₂ gas to perform the carbonation process for 30 min. Then, the carbonated sample was calcined for 6 min under 100% N₂ gas flow. The carbonation and calcination processes were repeated at 800 °C for 10 cycles. The constant gas flow rate for CO₂ and N₂ was 40 ml/min. The carbonation conversion was calculated using the following equation;

$$CO_2 \text{ Conversion}, X_N(\%) = \frac{w_N - w_I}{w_I} \times \frac{M_{CaO}}{M_{CO_2}} \times 100\%$$
(1)

where X_N is the carbonation conversion, w_N is the weight (%) of the carbonated sample after N cycle(s), w_1 is the initial weight (%) of the calcined sample, M_{CaO} and M_{CO_2} are molar masses of CaO and CO₂, respectively.

3. Results and discussion

3.1. Characterization of Ca(OH)₂ precursor adsorbents

3.1.1. XRD

The XRD patterns of $Ca(OH)_2$ precursor adsorbents are shown in Fig. 1. All the diffraction peaks could be attributed to hexagonal phase $Ca(OH)_2$ (calcium hydroxide), according to the standard Download English Version:

https://daneshyari.com/en/article/5355854

Download Persian Version:

https://daneshyari.com/article/5355854

Daneshyari.com