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a b s t r a c t

In recent years, lattice computing has emerged as a new paradigm for processing lattice ordered data
such as intervals, Type-1 and Type-2 fuzzy sets, vectors, images, symbols, graphs, etc. Here, the word ‘‘lat-
tice’’ refers to a mathematical structure that is defined as a special type of a partially ordered set (poset).
In particular, a complete lattice is a poset that contains the infimum as well as the supremum of each of
its subsets. In this paper, we introduce the quantale-based associative memory (QAM), where the notion
of a quantale is defined as a complete lattice together with a binary operation that commutes with the
supremum operator. We show that QAMs can be effectively used for the storage and the recall of color
images.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

To the best of our knowledge, most associative memory (AM)
models for storing and retrieving color images represent adapta-
tions of AMs for real-valued patterns such as the following two
straightforward approaches.

The first approach relies on the RGB system in which a color ele-
ment c is expressed in terms of red, green, and blue components,
i.e., c ¼ ½cr ; cg ; cb� (Acharya and Ray, 2005; Gonzalez and Woods,
2002). Hence, a color image can be decomposed into three gray-
scale images that are usually stored in three separate gray-scale
AMs. Zheng et al. (2010) applied this approach to color images
using a class of Cohen–Grossberg networks. In fact, any gray-scale
AM model can be extended to cope with color patterns using this
approach, however the lack of interaction between the color chan-
nels may affect the noise tolerance of the resulting color AM.

The second approach used by Vazquez and Sossa (2008, 2009) is
based on the 24-bit representation of digital color images. Pre-
cisely, an integer q from 0 to 224 � 1 is mapped to a color value
using the equation q ¼ 2562cr þ 256cb þ cg , where cr ; cb; cg in
f0;1; . . . ;255g denote the red, green, and blue components of the
color element in the digital 8-bit RGB system. In view of this rep-

resentation, any AM for integer- or real-valued patterns can gener-
ate associations between color images. A drawback of this
approach is that visually very different color elements may be
associated with similar integer values. For example, the integers
255 and 256 are respectively assigned to the pure blue and visually
black elements whose RGB representations are ½0;0;255� and
½0;1;0�.

Recall that the RGB model represents the most popular color
space for storing, processing, and displaying color images. How-
ever, this model is not suited to quantify the perceptual difference
between images (Plataniotis et al., 1999). In fact, the Euclidean dis-
tance between two color elements in the RGB system may not re-
flect the color difference perceived by the human eye. For instance,
at higher illumination, the eye is more sensitive if the color has not
been saturated (Acharya and Ray, 2005). Therefore, the aforemen-
tioned approaches are not recommended in application areas such
as multimedia, telecommunications, and printing industry, where
the perceptual quality of the restored image is very important.

In contrast to the approaches presented above, sparsely con-
nected autoassociative morphological memories (SCAMMs) were
not derived from gray-scale models (Valle, 2009). These models
are also known as sparsely connected lattice autoassociative memo-
ries (Valle and Grande Vicente, 2012) and can be defined on any
complete lattice, a mathematical structure that is defined in terms
of a partial ordering on a set (Birkhoff, 1993). In particular, the set
of colors in the CIELab system can be equipped with a partial
ordering scheme that depends on the distance with respect to a
certain color reference (Valle and Grande Vicente, 2011). Since CIE-
Lab is a perceptually uniform color space in the sense that the
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Euclidean distance between two color points corresponds to the
perceptual difference by the human visual system (Acharya and
Ray, 2005), CIELab-based SCAMMs can be used in applications that
emphasize the perceptual image quality. Moreover, SCAMMs rep-
resent attractive models for storing and reconstructing multi-
valued, large-scale patterns such as color images since the
following factors contribute to a very low computational effort:

1. Construction of the weight matrix using only kn2 comparisons;
2. Sparsity of the weight matrix;
3. Recall phase requiring only calculations of suprema and infima

(i.e., in most cases, maxima and minima).

Recently, Valle and Grande Vicente proved that the weight
matrices of SCAMMs arise from the ones of classical morphological
associative memory (MAM) models via the application of a thres-
holding operation (Valle and Grande Vicente, 2012). Recall that –
in comparison to SCAMMs – classical MAMs are defined in a richer
mathematical structure (than merely a complete lattice) that in-
cludes a group operation apart from the lattice operations (‘‘meet’’
and ‘‘join’’) (Birkhoff, 1993; Sussner and Valle, 2006; Sussner and
Esmi, 2011; Ritter et al., 1998). We believe that this is the reason
why MAMs exhibit a better error correction capability than SCAM-
Ms in certain applications concerning the storage and recall of
gray-scale images (Valle, 2009). However, the MAM models, whose
weight matrices are fully connected, are computationally too
expensive for dealing with large-scale patterns.

These considerations motivated us to introduce an AM model
on a quantale. In applications using color images, a quantale arises
by endowing the CIELab system in spherical coordinates with a
binary operation that is associative and has an identity. In this pa-
per, we prove that the resulting quantale-based autoassociative
memory (QAM) exhibits optimal absolute storage capacity. More-
over, we show by means of theoretical and experimental results
that QAMs have an improved tolerance with respect to noise in
comparison to SCAMMs. Like the sparsely connected autoassocia-
tive fuzzy implicative memories and other traditional sparsely con-
nected associative memory models (Bohland and Minai, 2001;
Valle, 2010), the QAM model can be organized in a small-world
network.

This paper is organized as follows: Section 2 discusses the
mathematical background on the notion of a quantale that consists
of a complete lattice with an associative binary operation. Section 3
presents a class of AM models for computing in quantales. Section 4
reviews both the RGB and CIELab color models and introduces the
spherical CIELab quantale. The spherical CIELab quantale-based
autoassociative memories which can be used for the storage of color
images are presented in Section 5. The paper finishes with the con-
cluding remarks in Section 7.

2. Mathematical background

The quantale-based autoassociative memory (QAM) that we intro-
duce in this paper represents an approach towards computational
intelligence based on lattice theory (Kaburlasos and Ritter, 2007).
We could also refer to the QAM as a lattice computing model if
the technical term ‘‘lattice computing’’ is interpreted in a wider
sense than originally envisaged (Graña, 2008). Informally speaking,
lattice computing should refer to a collection of techniques and
methodologies for analyzing and processing data by means of
operations in mathematical lattices (Birkhoff, 1993). Many lattice
computing approaches towards computational intelligence such
as fuzzy lattice neurocomputing and reasoning techniques (Kabu-
rlasos et al., 2007; Kaburlasos and Kehagias, 2006; Kaburlasos
and Petridis, 2000; Li et al., 2012; Liu et al., 2011) as well as clas-

sical and fuzzy morphological associative memories (Sussner and
Valle, 2006; Graña et al., 2009; Ritter and Urcid, 2011; Valle and
Sussner, 2011; Ritter et al., 1998; Valle and Sussner, 2008) and
other morphological neural network models (Sussner and Esmi,
2011; Pessoa and Maragos, 2000; Ritter and Sussner, 1996) require
an additional algebraic structure apart from a complete lattice
structure. The QAM model represents yet another addition to the
list of these approaches towards computational intelligence.

The lattice computing model introduced in this paper is defined
in an algebraic structure called (unital) quantale. The concept of a
quantale was devised by Mulvey to provide an appropriate frame-
work for the logic of quantum mechanics (Mulvey, 1986) and is
also closely related to the linear logic of Girard (1987), Yetter
(1990), the notion of residuated lattices (Ward and Dilworth,
1939; Russo, 2010), and the algebraic structure called complete lat-
tice-ordered double monoid (clodum) introduced by Maragos
(2005). The following subsection provides some mathematical
background on quantales.

2.1. Quantales

A quantaleQ is a complete latticeQ together with an associative
binary operation called multiplication which distributes on both
sides over arbitrary suprema. Recall that a partially ordered set Q
is a complete lattice if every non-empty subset of Q has an infi-
mum and a supremum in Q. We denote the supremum and the inf-
imum of a non-empty set X #Q by

W
X and

V
X, respectively. In

particular,
Wn

j¼1xj and
Vn

j¼1xj are respectively used to represent
the supremum (or maximum) and the infimum (or minimum) of
a finite set X ¼ fx1; . . . ; xng#Q. Let the symbol ‘‘�’’ denote a binary
operation Q�Q ! Q. The operation � is distributive over arbitrary
suprema if the following equations hold true for every q 2 Q and
for all non-empty set X #Q:

q �
_

X
� �

¼
_
x2X

q � xf g and
_

X
� �

� q ¼
_
x2X

x � qf g: ð1Þ

Eq. (1) implies that the multiplication is increasing in both argu-
ments, i.e., if x 6 y then both inequalities x � q 6 y � q and
q � x 6 q � y hold true for all q 2 Q. Moreover, the least element of
Q, denoted by the symbol ‘‘?’’, is a zero or absorbing element of
the quantale Q, i.e., q� ?¼? �q ¼? for all q 2 Q (Russo, 2010).

We speak of a commutative quantale if the multiplication is
commutative. Similarly, we speak of a unital quantale if the multi-
plication has an identity or neutral element, i.e., if there exists
e 2 Q such that e � x ¼ x � e ¼ x for all x 2 Q. The multiplication of
a quantale Q is always residuated (Russo, 2010; Blyth and Jano-
witz, 1972; Blyth, 2005). Specifically, there exist binary operations
n and = in Q such that the following equivalences hold true for
x; y; z 2 Q:

x � y 6 z iff x 6 z=y iff y 6 x n z: ð2Þ

The operations = and n are respectively called the right and left
residuals or divisions of �. For any x; y 2 Q, these two operations
are uniquely determined by the equations

x n y ¼
_
fz 2 Q : x � z 6 yg ð3Þ

and

y=x ¼
_
fz 2 Q : z � x 6 yg: ð4Þ

If the quantale Q is commutative then the left and right residuals
coincide, i.e., the equation x n y ¼ y=x holds true for all x; y 2 Q.

Example 1. The set of extended nonnegative real numbers
RP0
þ1 ¼ ½0;þ1� represents a complete lattice with the usual order-

ing. The largest and the least elements are þ1 and 0, respectively.
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