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a  b  s  t  r  a  c  t

The  aim  of  the  present  work  is the  numerical  simulation  of the  unsteady  non-linear  heat  transfer  prob-
lems.  A nanosecond  Gaussian  in  time  and  space  pulse  is  considered  as  the  heat  source  acting  on  a  Si
substrate.  Four  different  scenarios  are  considered  in  order  to examine  the  influence  of  the  laser  param-
eters  on  the  Si surface  temperature,  namely  variation  of  the  fluence  of  the  laser  beam,  the radius  of the
laser beam  at  the  Si surface,  the  duration  of  the  pulse  and  finally  the  number  of  laser  pulses.  A  meshfree
point  collocation  method  (MPC)  has  been  employed  for  the  solution  of  the  problem.  More  precisely,  the
moving  least  squares  (MLS)  approximation  is  incorporated  for  the  construction  of  the  shape  functions,  in
conjunction  with  the  general  framework  of  the  point  collocation  method.  The  accuracy  and  stability  of  the
proposed  scheme  are  demonstrated  through  three  representative  benchmark  problems  in  1D,  2D  and  3D.
Numerical  results  are  found  to be  in  very  good  agreement  with  analytical,  numerical  and  experimental
results  presented  in the  literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Laser-material interaction has been intensively studied over the
past few decades. The complexity of processes involved makes
work on this topic a challenge for scientists. Related applications
predominately in areas of edge technologies like micromachining
[1,2], laser deposition [3],  nanoparticle fabricating [4] and so on,
require firm understanding of the physical processes involved. The
calculation of the relevant parameters such as fluence thresholds,
and temperature distribution in the material as a function of time
are of great importance for applications and a combination of both
experimental and computational work is needed to achieve this
goal. As the fundamental process in the laser-material interaction
is heat transfer from the laser to the material, a large number of
analytical and numerical models found in the literature focus on
this process aiming towards a fuller understanding of both thermal
and non-thermal procedures involved [5] and the prediction of the
outcome of this interaction.

Solving heat transfer problems analytically, except for a few
simplified cases, can present difficulties, due to the complexity of
the equations involved. In most instances, this leads to the for-
mulation of a model needed to be treated numerically. Traditional
numerical techniques, such as finite differences (FDM) [6,7], finite
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volume methods (FVM) [8],  finite element methods (FEM) [9],  and
boundary element methods (BEM) [10], have been effectively and
routinely applied. In spite of their great success, traditional numer-
ical methods still have some elementary drawbacks that impair
their computational efficiency and even limit their applicability
in more practical problems, particularly in three-dimensions. The
main reasons of deficiency are related to the use of low order
piecewise polynomial approximations, and the necessity to create
a mesh in the application domain and its boundary. As a result, the
numerical solution depends strongly on the mesh properties. More
precisely, the FVM and FEM have been the dominant numerical
schemes applied to a variety of practical engineering and physi-
cal problems, since they have the advantage of being applicable at
irregular geometries. Despite the fact that mesh generation can be
fully automated in two  dimensions, this can be a troublesome pro-
cedure at three dimensions, usually demanding substantial human
intervention. Thus, in the majority of heat transfer problems, mesh
generation is a far more time consuming and expensive task than
the solution of the partial differential equations (PDEs) themselves.

Consequently, the development and application of new numer-
ical methods can prove to be a major contribution in the field.
Recently, in the general area of computational mechanics there is
a growing interest in developing so called meshless methods or
particle methods as alternatives to traditional grid-based methods.
The key idea of these methods is to provide numerical solutions
on a set of arbitrarily distributed points without using any mesh
to connect them. Meshfree (or meshless) methods, are a class of
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numerical techniques that rely on interpolation/approximation on
(non-ordered in general) spatial point distributions and offer the
possibility of reducing significantly the effort devoted to form the
numerical model. Meshless techniques overcome the aforemen-
tioned difficulties associated with meshing by eliminating the mesh
altogether. Interpolation/approximation is performed in terms of
nodal points distributed at the analysis domain using functions that
provide compact support. A weighted residual technique is used to
generate the discrete set of equations corresponding to the govern-
ing partial differential equations. Several meshfree methods have
been proposed since the prototype of the meshfree methods, the
smoothed particle hydrodynamics (SPH) was introduced [11,12].

The proposed numerical scheme in this paper is employed in
nanosecond laser annealing of silicon, by far the most common
material in semiconductor industry with a large number of innova-
tive applications based on laser treatment of it. A three-dimensional
transient conductive model is solved by using an in-house mesh-
less point collocation code. The article is organized as follows: in
Section 2, a brief description of the MLS  approximations and of
the corresponding MLS  shape functions is given. In Section 3, the
description of the discretization steps of the diffusion equation,
which models the physical problem, is presented. Numerics take
place in Section 4, where three benchmark problems are solved.
All cases are extensively validated through direct comparison with
either the analytical solutions, or other established computational
techniques, such as FEM or EFG, and the efficiency of the proposed
meshless technique is demonstrated. Following, in Section 5, a case
study for the heat transfer characteristics in a silicon sample under
intense nanosecond laser irradiation takes place. Conclusions are
summarized in Section 6.

2. Moving least squares shape functions

Among the available meshless approximation/interpolation
schemes, the MLS  method [13] is widely used, due to its complete-
ness and robustness [11,12]. Its kernel is a direct approximation of
the field variables on a local scheme and is easily extended to n-
dimensional problems. A brief summary of the MLS approximation
schemes follows for 2D, with an extension to 3D.

Within the MLS  context, the approximation Th(x) of the
unknown field function T(x) is expressed as

Th(x) =
m∑

i=1

pi(x)˛i(x) = pT (x)a(x) (1)

where pT(x) is a polynomial based on space coordinates, m is the
total number of the terms in the basis and a(x) is the vector of
coefficients. Herein, a second order (m = 6) polynomial basis for 2D
problems has been used ((m = 10) polynomial basis for 3D prob-
lems). There exists a unique local approximation associated with
each point in the domain. In order to determine the form of a(x), a
weighted discrete error norm is constructed and minimized. Addi-
tionally, in the present paper a Gaussian weight function is used
[12,14], yet the support domain does not have a standard point
density value. Instead, a constant number of nodes are used for the
approximation of the field function.

Finally, the approximation function takes the form

Th(x) = pT (x)A−1(x)B(x)︸  ︷︷  ︸
ϕ(x)

T s (2)

here the spatial dependence has been lumped into one row matrix,
ϕ (x) and, therefore, the approximation takes the form of a product
of a matrix of shape functions with a vector of nodal data, while

matrices A and B are defined in [12]. Derivatives of the shape func-
tions [15] may  be calculated by applying the product rule to

� = pT A−1B. (3)

3. Governing equations and solution procedure

3.1. Governing equations

In the present study a general form of energy equation for
three-dimensional heat transfer in anisotropic materials with tem-
perature and spatial dependent material properties is given as:

�(x, T)c(x, T)
∂T

∂t
= ∇(k(x, T)∇T) + Q (x, t) (4)

with the following initial and boundary conditions:

T(x, 0) = Ti on V (5)

T(x, t) = TSD
x ∈ ∂˝D (6)

T(x, t) = h(T − T∞) x ∈ ∂˝N (7)

where ∂˝D and ∂˝N are the Dirichlet and the Neumann boundaries
of the spatial boundary ∂  ̋ and, ∂  ̋ = ∂˝D ∪ ∂˝N, ∂˝D∩ ∂˝N = ∅.

Meshless Point Collocation method for the governing equations
The Meshless Point Collocation method is a meshless “strong-

form” description one. The “strong-form” description of the
governing equations and boundary conditions is used and
discretized by collocation techniques. The aforementioned formu-
lation has the following attractive advantages. The formulation is
truly meshless and the implementing procedure is straightforward,
while the algorithms and the implementation can be kept sim-
ple, particularly when handling problems with Dirichlet boundary
conditions [12]. Under these conditions, strong-form methods are
highly efficient computationally, even with polynomial approxi-
mation functions, and the solution can be systematically obtained
with increased accuracy, compared to FEM, FDM, or other com-
putational methods. In general, MFree strong-form methods may
still suffer from some local stability and accuracy issues, depending
on the problem [12]. However, these local restrictions are now sys-
tematically avoided with the utilization of Type-I nodal distribution
and proper local point cloud refinement procedures, in accordance
with [14–17],  even for natural or mixed type boundary conditions.

In this section we present the collocation scheme using the MLS
approximation to spatially discretize the unsteady homogeneous
diffusion equation. We  also present a �-weighted time-stepping
scheme for temporal discretization. As mentioned above, the gov-
erning equation of the unsteady problem is considered:

�(x, T)c(x, T)
∂

∂t
T(x, t) − LT(x, t) = Q (x, t) ∀x ∈  ̋ ⊂ Rd, t > 0,

GT(x, t) = g(x, t), ∀x ∈  ̋ ⊂ Rd, t > 0,
(8)

where L, the “diffusion” operator, is defined as L = ∇  (k( x, *) ∇  *) and
G is the boundary operator, which can be Dirichlet, Neumann or a
mixed operator. The above set of equations has to be implemented
with an initial condition of the form

T(x, t) = T0(x), t = 0 (9)

where g( x, t) and T0( x) are known functions.
The MLS  approximation leads to:

T(x, t) =
N∑

i=1

ϕi(x)Ti(t) (10)

The nodes of the domain  ̋ are ordered as distributed nodes of
Type-I, situated within the interior and at the boundary ∂˝. nd is set
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