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The classical k-NN classifier has been widely used in pattern recognition. However, it does not take into
account the structural information of local samples. This paper presents a novel classifier named compo-
nent-based global k-NN classifier (CG-k-NN), which takes advantage of the structural information of the
local neighbors for enhancing the classification performance. We choose k nearest neighbors of a given
testing sample globally at first, and then use these neighbors to represent the testing sample via ridge
regression. In the further step, we construct the component image of each class by using the intra-class
images from the k nearest neighbors and the corresponding representation coefficients. Finally, the
testing sample is assigned to the class that minimizes reconstruction residual. The proposed method
CG-k-NN is evaluated using the ORL, FERET, AR face image database and PolyU palmprint databases.
The experiment results demonstrate that our method is more efficient and effective than the state-of-
the-art methods such as sparse representation based classifier (SRC) and linear regression based classifier

(LRC).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The nearest neighbor (NN) classifier is widely-used in pattern
classification due to its simplicity and effectiveness. Cover and Hart
have shown that in large sample cases, the error rate of the NN
classifier is bounded above by twice the Bayes error rate (Cover
and Hart, 1967). The method was subsequently generalized to be
k nearest neighbor classifier (Fukunaga, 1990). But the k-NN classi-
fier decides the class label of the testing sample just based on the
maximum number of training samples that belongs to the same
class, without considering the structure of the data.

Rather than looking at the k-NN from all training samples, some
recent works focus on the local neighborhood within classes. Li and
Lu (Li and Lu, 1999) proposed the nearest feature line (NFL) meth-
od to generalize the representational capacity of the available
limited prototypes. In a feature space, the NFL method uses a
feature line to interpolate and extrapolate each pair of prototype
feature points belonging to the same class. The feature line virtu-
ally provides an infinite number of prototype feature points of
the class. The representational capacity of the prototypes is thus
expanded. Chien and Wu (Chien and Wu, 2002) further extended
Li and Lu’s work on NFL and proposed the nearest feature plane
(NFP) and the nearest feature space (NFS) methods for pattern
classification.
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Since the NFL method is conducted for each pair of available
prototypes, it faces the large computation complexity problem
when there are many prototypes in each class. The NFP method
also faces the similar problem due to its increased computational
requirement. The nearest neighbor line (NNL) and the nearest
neighbor plane (NNP) (Zheng et al., 2004) methods were suggested
to alleviate the computation complexity of the NFL and NFP meth-
ods. Because only one feature line or a feature plane in each class
need to be computed, The NNL and NNP methods are computation-
ally more efficient than the NFL and NFP methods. Recently, the
hit-distance based nearest neighbor classifiers was proposed to en-
hance the generalization power of the NNL and NNP methods (Lou
and Jin, 2006). The connection between the tangent distance (Sim-
ard et al., 2001) and the NFL is discussed in (He et al., 2008).

Recently, Linear Regression Classifier (LRC) was presented for
face classification (Naseem et al., 2010). The method formulates
the identification task as a problem of linear regression. LRC is
actually a special case of local subspace based classifier. It operates
respectively by least-squares estimation using all samples of each
class. In addition, the sparse representation-based classifier (SRC),
which is presented by Wright et al., has been successfully applied
to real-world face recognition problems (Wright et al., 20093,
2009b). The basic idea of SRC is to represent a given testing sample
as a sparse linear combination of all training samples. Both of the
LRC and SRC yield high recognition accuracies of face identification
in the presence of disguise. However, testing sample may be repre-
sented by training samples that are far away from it via the repre-
sentation of SRC and LRC. So, they will lead to error classification
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when the supporting samples have different class label with test-
ing sample.

To address the problems of k-NN, LRC and SRC, we present a
new method called component-based global k-NN classifier (CG-
k-NN). Our method using the k nearest neighbors of the testing
sample from all training samples to represent it. In this way, we
can avoid the case that the testing sample is represented by the
training samples that are far away from it, which might be encoun-
tered in LRC and SRC. In addition, since we only use a small number
of training samples to represent the testing sample, the scale of the
involved ridge regression problem is small. So it is computationally
efficiency to calculate the representation coefficients. In contrast,
SRC uses entire training samples to represent a testing sample
and needs to solve a L; optimization problem, so it is generally
time-consuming when the number of training samples is large.
In addition, compared with the k-NN classifier which determines
the class label of testing sample only based on the number of sam-
ples belonged to each class, the proposed CG-k-NN takes into ac-
count the structural information of samples by using the class
reconstruction residual as a decision measure. The evaluation
intentionally tested that the new approach is suited to a variety
of scenarios and data, and is more effective and computationally
efficient than k-NN, LRC and SRC in most cases.

2. Outline of LRC and SRC
2.1. Linear regression classifier

Suppose there are ¢ known pattern classes. Let A; be the matrix
formed by the training samples of the ith class, i.e., A; = [Xi1, X2, - - -,
xir] € RVM where M; is the number of training samples of the ith
class. Let us define a matrix A=[A,A,,...,Ac] € RVM, where
M = Ziclei :

In LRC, the linear equation system y = Aw is solved in each class.

For a given testing sample y, we use the training samples of the ith
class to represent it. The least-square estimation of the representa-
tion weights is given by Hastie et al. (2001), Seber (2003), Ryan
(1997):
w; = (AJA) 'Aly, 1)
We can reconstruct y based on w; and the training samples of the ith
class, i.e. y; = A;w;. The distance between y and the ith class is
defined as d; = ||y — Jil|,. The label of the testing sample is decided
by the class with the minimum distance d; .

2.2. Sparse representation-based classifier

The sparsest solution to y = Aw can be sought by solving follow-
ing L; optimization problem (Donoho, 2006; Candés et al., 2006;
Candeés and Tao, 2006):

(L) W= argmin ||w||;, subject to y = Aw. (2)
This problem can be solved in polynomial time by standard linear
programming algorithms (Chen et al., 2001).

After obtaining the sparsest solution w, we can design a sparse
representation based classifier (SRC) in terms of the class recon-
struction residual. Specifically, for each ith class, let 5;:RY — RN be
the characteristic function that selects the coefficients associated
with the ith class. For w € RV, 5{w) is a vector whose only nonzero
entries are the entries in w that are associated with the ith class.
Using only the coefficients associated with the ith class, one can
reconstruct a given testing sample y as y; = Ad;(w). The corre-
sponding class reconstruction residual is defined by

1Y) =y = yilla = [ly — Asi(w)]l 3)

The SRC decision rule is: If r;(y) = minr;(y), y is assigned to the Ith
class. :

3. Component-based global k-NN classifier

This section presents a novel classifier coined component-based
global k-NN classifier (CG-k-NN), which takes advantage of the
structural information of the local neighbors for enhancing the
classification performance of the k-NN classifier. CG-k-NN uses
the k nearest neighbors to represent the testing sample, and calcu-
lates the representation weights via Tikhonov regularization. CG-k-
NN can successfully avoid the error that LRC encounters and re-
duce the computational complexity of SRC.

3.1. Tikhonov regularization of linear regression

Tikhonov regularization was initially presented by Andrey
Tychonoff and applied to ill-posed problems (Tikhonov and Arse-
nin, 1977). It is also known in the statistical literature as ridge
regression (Hoerl and Kennard, 1970).

As we know, the least square solution of the ordinary linear
regression can be given by:

w=(ATA)'ATy. (4)

Obviously, the inverse of the matrix A"A in (4) must exist. However,
the covariance matrix is sometimes on the verge of singularity or
ill-conditioned. Tikhonov Regularization can overcome the singu-
larity by appending the regularization term. The solution of Tikho-
nov regularization is gained by minimizing;:

llAw — y|I? + ||ITw|P?, (5)

where I' is the Tikhonov matrix. The Tikhonov matrix is generally
chosen as I' = al, where I is the identity matrix, and « is the Tikho-
nov factor, a parameter to be chosen.

The covariance matrix A"A in Tikhonov regularization turns into
ATA + T'T", for some suitably chosen Tikhonov matrix I'. An explicit
solution of Eq. (5) is given by:

w=ATA+TT)'Aly. (6)

3.2. Component-based global k-NN classifier

The steps of our method are described as follows. First, find its k
nearest neighbors of a given testing sample from all training sam-
ples. Then, represent the testing sample with these k nearest
neighbors. The representation coefficients can be obtained by solv-
ing a Tikhonov Regularization problem. Subsequently, we can
construct the component image of each class by using the intra-
class images from the k nearest neighbors and the corresponding
representation coefficients. Finally, compute the residual between
the testing sample and the component images of those classes. We
can make a decision in favor of the class with the minimum
residual.

Specifically, given a testing sample y, let us represent it by its k
nearest neighbors. Suppose there are k; nearest neighbors
&1,5(,-2, -+, Xy, belonging to the i£h class, i.e., where k = 377 k;. Let
A = [Xi, X, -+, Xi,] € RV and A be the matrix composed of all k
nearest neighbors. Further, the representation coefficients of a gi-
ven testing sample y are learned by these k nearest neighbors.
The representation coefficients can be calculated by solving (6).
For each ith class, let W;=[W;, , Wi, ---, Wy, e R"",wheretS
€(1,2,---,M;),s=1,2,---,k; is the coefficients and only associ-
ated with the ith class. The component image y; of Class i for the
given testing sample y can be calculated as following:

Ji =AW, (7)
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