
Feature selection from high-order tensorial data via sparse decomposition

Donghui Wang ⇑, Shu Kong
Department of Computer Science and Technology, Zhejiang University, Hangzhou 310027, PR China

a r t i c l e i n f o

Article history:
Received 19 May 2011
Available online 21 June 2012

Communicated by G. Borgefors

Keywords:
Dimensionality reduction
Feature selection
Tensor decomposition
High-order principal component analysis
Sparse principal component analysis

a b s t r a c t

Principal component analysis (PCA) suffers from the fact that each principal component (PC) is a linear
combination of all the original variables, thus it is difficult to interpret the results. For this reason, sparse
PCA (sPCA), which produces modified PCs with sparse loadings, arises to clear away this interpretation
puzzlement. However, as a result of that sPCA is limited in handling vector-represented data, if we use
sPCA to reduce the dimensionality and select significant features on the real-world data which are often
naturally represented by high-order tensors, we have to reshape them into vectors beforehand, and this
will destroy the intrinsic data structures and induce the curse of dimensionality. Focusing on this issue, in
this paper, we address the problem to find a set of critical features with multi-directional sparse loadings
directly from the tensorial data, and propose a novel method called sparse high-order PCA (sHOPCA) to
derive a set of sparse loadings in multiple directions. The computational complexity analysis is also pre-
sented to illustrate the efficiency of sHOPCA. To evaluate the proposed sHOPCA, we perform several
experiments on both synthetic and real-world datasets, and the experimental results demonstrate the
merit of sHOPCA on sparse representation of high-order tensorial data.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is a widely-used feature
extraction and dimensionality reduction tool, and it is beneficial
to better performance in some specific applications (Guyon and
Elisseeff, 2003), as well as its variations and improved versions
(Hoffmann, 2007; Chen and Zhu, 2004). Recently, PCA has been
used in microarray data analysis (Jatin et al., 2002), in which each
variable corresponds to a specific gene. However, when applying
PCA to microarray data, it is difficult to interpret the results that
each derived PC is a linear combination of all the genes or variables
and the loadings are typically nonzero. As a result, PCA fails to dis-
cover the components of practical significance (Jeffers, 1967).

For this reason, researchers have developed several sparse ap-
proaches by imposing some sparsity constraints such as lasso (Tib-
shirani, 1996) and elastic net (Zou and Hastie, 2005) to the
loadings, then some of the loadings are vanished and the key vari-
ables are selected. Roughly speaking, there are two families of sPCA
methods in the literature (Dou et al., 2010). The first one uses the
maximum-variance property of PCs, such as DSPCA (d’Aspremont
et al., 2004), SCoTLASS (Jolliffe et al., 2003), sPCA-rSVD (Shen and
Huang, 2008), sPCA-WTH (Witten et al., 2009), sPCA-DC
(Sriperumbudur et al., 2007), etc. The other is based on regression-
type problems such as sPCA-ZHT (Zou et al., 2006) and sPCA-OS

(Dou et al., 2010). Even though these sPCA approaches can select
some critical features, they are all limited to vector-represented
data.

Besides sPCA methods, in the literatures, there are many other
approaches to address the problem of feature selection, such as
Laplacian Score (LapScor) (He et al., 2005), Multi-Cluster Feature
Selection (MCFS) (Cai et al., 2010) and Minimum Redundancy
Spectral Feature Selection (MRSF) (Zhao et al., 2010). These meth-
ods commonly use various graphs to characterize the manifold
structure (Cai et al., 2007) at first and then select the features by
ranking or regression steps. For example, LapScor computes the
Laplacian score for each feature and then rank them, and both
MCFS and MRSF exploit sparse constraints in multi-output regres-
sion. However, the performance of these methods is determined by
the effectiveness of graph construction, and these methods only
deal with vector-represented data.

Let’s consider higher-order tensors, which naturally represent
the real-world data, such as images and videos. Prior to applying
sPCA, we have to vectorize these data in advance, which will in-
duce the curse of dimensionality and destroy the intrinsic data
structures, e.g. ignoring the special relationships between the pix-
els in the image (He et al., 2005). Moreover, compared with vector-
represented learning methods, the tensor-represented one holds
several advantages (Haiping et al., 2011): natural representation,
preserving natural data structure, estimating fewer parameters,
less small-sample-size problem and ability to handle massive data.
Based on tensor algebra and its successful applications (Rittner
et al., 2010; Rana et al., 2009; Andaló et al., 2010; Savas and Eldén,
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2007), we may ask, is it possible to select some key PCs that cap-
ture the maximum variability of the observations directly from
these tensor-represented data? The answer is positive, and we be-
lieve it is a non-trivial work to find a method that avoids vectoriz-
ing process but captures the intrinsic variability by producing a set
of sparse loadings.

Focusing on this issue, we first investigate high-order singular
value decomposition (HOSVD) and high-order orthogonal iteration
(HOOI). Based on the two algorithms, we propose a novel method
called sparse high-order PCA (sHOPCA) to decompose the tensorial
data with a set of selected features. In addition, we provide compu-
tational complexity analysis, which theoretically demonstrates the
computational efficiency of sHOPCA. We also consider another
problem of how to measure the explained variance in high-order
data. By investigating the adjusted explained variance proposed
in Shen and Huang (2008), we develop a general criteria to fit
the measurement. Finally, to fairly evaluate our model, we perform
several experiments both on synthetic and real-world benchmarks,
and compare our sHOPCA with some popular sPCA approaches. The
promising results demonstrate sHOPCA indeed discovers the
intrinsic key features which capture more variability of the data
under approximately the same compression ratio and sparse
degree.

We begin our work by introducing the tensor algebra and nota-
tions used in this paper, which mainly follow Kolda and Bader
(2009). Specially, XðkÞ symbolizes the matrix corresponding to
the flattened tensor along the kth mode and Im denotes the
m�m identity matrix. Moreover, the kth element in a sequence
is denoted by a superscript in parentheses, e.g. XðkÞ denotes the
kth matrix in a sequence. We assume there are n observations,
each one is represented as a Nth-order tensor, i.e.
fXi 2 RI1�I2�����IN ; i ¼ 1;2; . . . ;ng. Consequently, the sample set can
be represented as an ðN þ 1Þth-order tensor X 2 RI1�I2�����IN�n.

2. High-order data decomposition

To generalize SVD for tensors, we first investigate SVD in the
tensor viewpoint. As a matrix X has two vector spaces, i.e. a col-
umn space and a row space, then SVD decomposes X into its two
vector spaces as X ¼ URVT ¼ R�1U�2V, where U and V represent
the orthogonal column space and row space, respectively. Obvi-
ously, SVD can be easily extended to a more generalized version,
i.e. high-order SVD (HOSVD), which generates N associated vector
spaces of a Nth-order tensor X 2 RI1�����IN :

X � G�1Uð1Þ�2Uð2Þ � � � � i�NUðNÞ ¼ sG; Uð1Þ; . . . ;UðNÞt; ð1Þ

where the columnly orthogonal matrix VðkÞ 2 RIk�Jk represents the
kth-mode vector space, and G 2 RJ1�����JN is the core tensor of X

which shows the interaction between different spaces, and
Jk <¼ Ik. Although HOSVD has been already showed a convincing
generalization of the matrix SVD, it is not optimal in terms of giving
the best fit measured by the norm of the difference. However, it can
be used as a good starting for a more efficient iterative algorithm
called HOOI, which solves the following objective:

min
G;Uð1Þ ;...;UðNÞ

kX� sG; Uð1Þ; . . . ;UðNÞtk2

s:t: G 2 RJ1�����JN ;

UðkÞ 2 RIk�Jk ; and UðkÞ
T

UðkÞ ¼ IJk
; for 8k ¼ 1; . . . ;N; ð2Þ

where k � k denotes the Frobenius norm of a tensor. HOOI can be
seen as an iterative optimization problem for HOSVD, which pro-
vides us with the basic formulation to derive modified sparse PC’s
and sparse loadings.

3. Sparse high-order principal component analysis

3.1. Derivation

Let’s first review the standard PCA. Denote 2nd-order dataset as
X 2 Rn�p, where n and p are the number of observations and vari-
ables, respectively. If we use SVD to decompose X as X ¼ URVT ,
then the columns of U are the PCs of unit length with the columns
of V as the loadings and the variance of the ith PC is the ith
diagonal element of R. Usually the first q (q < p) PCs are chosen
to represent the data, therefore dimensionality is reduced.

To address the drawback of PCA that it fails to discover the sig-
nificant feature variables, researchers propose several sPCA meth-
ods by adding some sparse penalties on PCA. Based on the fact that
PCA can be written as a regression-type optimization problem, Zou
et al. (2006) propose a regression-based sPCA (dubbed sPCA-ZHT),
which enables some loadings to be exactly zero and derives the
modified PCs by solving:

ðÛ; ŴÞ ¼ argmin
U;W

kX� XWUTk2
2 þ k

Xq

j¼1

kwjk2
2

þ
Xq

j¼1

k1;jkwjk1

s:t: UT U ¼ Ik; ð3Þ

where W is the sparse loadings.
Consider an image dataset X 2 RI1�I2�n, consisting n grayscale

images of I1 � I2-pixel resolution. By HOSVD, we can decompose
X as:

X ¼ G�1Uð1Þ�2Uð2Þ�3Uð3Þ: ð4Þ

Rewrite Eq. (4) in terms of the flattened tensor form along mode-3:

Xð3Þ ¼ Uð3ÞGð3ÞðUð2Þ � Uð1ÞÞT : ð5Þ

Obviously, if we use sPCA-ZHT to reduce dimensionality on the vec-
torized image dataset, we will get the same expression as Eq. (5),
where the modified PCs and the corresponding loadings are
Uð3ÞGð3Þ and ðUð2Þ � Uð1ÞÞ, respectively. Here, the two matrices Uð1Þ

and Uð2Þ project the original dataset into a new tensor space by
selecting and transforming variables. Then we may wonder how
to get the sparse loadings Uð1Þ and Uð2Þ directly from the tensorial
dataset, without reshaping each image into a huge vector. More
intuitively, we are also interested in how to extend this to a much
higher-order dataset.

3.2. Objective function

Given the high-order dataset as X 2 RI1�����IN�n, consisting of n
observations represented by a Nth-order tensor, the proposed
sHOPCA aims to minimize the objective function f:

ÛðjÞjNj¼1; Ŵ
ðjÞjNj¼1

� �
¼ argmin

UðjÞjNj¼1

WðjÞjNj¼1

f � kX�X�1ðUð1ÞWð1ÞT Þ
n

� � � � �NðUðNÞWðNÞT Þk2 þ
XN

k¼1

XJk

j¼1

k2;kkwðkÞj k
2
2

þ
XN

k¼1

XJk

j¼1

k1;k;jkwðkÞj k1

)

s:t: UðkÞ
T

UðkÞ ¼ IJk
;

k ¼ 1;2; . . . ;N; ð6Þ
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