Accepted Manuscript

Title: Synthesis and SERS activity of V₂O₅ Nanoparticles

Author: J. Pan M. Li Y.Y. Luo H. Wu L. Zhong Q. Wang G.H.

Li

PII: S0169-4332(15)00304-9

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2015.01.242

Reference: APSUSC 29688

To appear in: APSUSC

Received date: 16-12-2014 Accepted date: 30-1-2015

Please cite this article as: J. Pan, M. Li, Y.Y. Luo, H. Wu, L. Zhong, Q. Wang, G.H. Li, Synthesis and SERS activity of V_2O_5 Nanoparticles, *Applied Surface Science* (2015), http://dx.doi.org/10.1016/j.apsusc.2015.01.242

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- 1. V₂O₅ nanoparticles (NPs) of different sizes have been synthesized.
- 2. SERS activity of R6G over V₂O₅ NPs is size-dependent.
- 3. $42 \text{ nm V}_2\text{O}_5 \text{ NPs}$ have a detecting limit better than 10^{-8} M R6G .
- 4. SERS activity of R6G over V₂O₅ NPs is wavelength-dependent.
- 5. Energy matching between V₂O₅ and R6G is essential in PICT process.

Download English Version:

https://daneshyari.com/en/article/5358797

Download Persian Version:

https://daneshyari.com/article/5358797

Daneshyari.com