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a b s t r a c t

One of the solutions to the classification problem are the ensemble methods, in particular a hierarchical
approach. This method bases on dynamically splitting the original problem during training into smaller
subproblems which should be easier to train. Then the answers are combined together to obtain the final
classification. The main problem here is how to divide (cluster) the original problem to obtain best pos-
sible accuracy expressed in terms of risk function value. The exact value for a given clustering is known
only after the whole training process. In this paper we propose the risk estimation method based on the
analysis of the root classifier. This makes it possible to evaluate the risks for all subproblems without any
training of children classifiers. Together with some earlier theoretical results on hierarchical approach,
we show how to use the proposed method to evaluate the risk for the whole ensemble. A variant, which
uses a genetic algorithm (GA), is proposed. We compare this method with an earlier one, based on the
Bayes law. We show that the subproblem risk evaluation is highly correlated with the true risk, and that
the Bayes/GA approaches give hierarchical classifiers which are superior to single ones. Our method
works for any classifier which returns a class probability vector for a given example.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let D ¼ fðxi; ciÞgN
i¼1 be a finite training set, where xi 2 X are attri-

bute vectors and ci are target values from a finite set of K classes
C ¼ fC1; . . . ;CKg. A classification problem is to find a hypothesis
f : X ! C, such that f(xi) = ci + �, for some small �, i.e. generalizes
well the data given in D.

The hierarchical classifier (HC) was introduced earlier by one
of the authors (Podolak, 2008; Podolak and Bartocha, 2009), as a
classification model. HC builds a tree-like structure with simple
classifiers in all nodes, which are to solve the problem given
with a training set D. The training algorithm is recursive: first
a simple classifier Cl is built to solve the problem given with
D. The resulting Cl does not need to have a very low error, actu-
ally it is only supposed to be weak (Schapire, 1990; Schapire and
Singer, 1999). In order to strengthen the final accuracy, the prob-
lem is split into a set of subproblems. By a subproblem
I � f1; . . . ;Kg we understand the task of finding a hypothesis
fI : X ! CI , where CI(C, such that k 2 I iff Ck 2 CI . To denote a
subproblem we shall use I and CI interchangeably. Each sub-
problem I is solved with a new classifier which returns a class

probability vector for classes from CI . An important feature of
the HC model is that subproblems are constructed by recursive
partitioning of C into CI class subsets that may overlap, strength-
ening the whole model.

All classifiers in the tree are weak. For a K-class problem, a weak
classifier has the accuracy only high enough so that the probability
of the true class to have the highest activation is greater than 1/K
(Podolak and Roman, 2009). Thanks to that the individual node
training is computationally cheap and effective.

The accuracy of HC depends on both the node classifiers accu-
racy and the subproblems structure – this is the first top-down
stage, see Fig. 1. An input pattern x is first classified by the root
classifier Cl0, then passed on to children classifiers, each of which
is responsible for building a hypothesis for a different subproblem.
After reaching the leaf nodes the activations are passed back to the
root in a bottom-up way. Then, the final classification is computed
using one of the evaluation methods. In this paper we use the
weighted sum of the children answers:

ClHCðxÞ ¼
X

l

wlðxÞCllðxÞ;

where wl(x) is the weight of l-th child classifier for a given input
attribute vector x. The value returned by each Cll classifier (together
with the root one) is a probability vector Cl(x) = (Cl1(x), . . . ,ClK(x)) (if
ck R CI , then Clk(x) = 0 for classifier Cl built for subproblem CI ).

The clue to the high overall HC accuracy lies in proper partition
into subproblems. This partition is based on the training results of
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the current classifier node. Therefore, it can be thought of as a
boosting type approach (Schapire, 1990). After partitioning into
subproblems, classifiers defined for all of them are trained inde-
pendently. In other words, the subproblems are found before the
children classifiers are trained and the accuracy of the whole HC
will be known only after all classifiers are trained. The accuracy
is described in terms of so-called risk function. To obtain the best
possible partition we need to estimate the HC risk. To compute
it, we need the subclassifiers risk values. We need to evaluate them
without training the subclassifiers.

The aim of this paper is to provide such risk evaluation method
for all subproblems to estimate the risk of the whole HC and pro-
vide some cost function to find the optimal division into subprob-
lems. This evaluation of the children risks will be based on the risk
of the current classifier.

2. The HC structure

Recall that HC is trained using a dataset D ¼ fðxi; ciÞgN
i¼1, where

xi 2 X is an attribute vector and ci 2 C is the true class of xi, where
C ¼ fC1; . . . ;CKg.

Definition 1. HC built for a K-class problem given with D is a tuple
HC = (V,V0,child) such that V = {(Cll,Fl)} is a set of nodes, each consisting
of a classifier Cll and a binary clustering matrix Fl, such that

Fl ¼ K � Ll matrix if jchildðVlÞj > 0
; otherwise;

(
where child : V ? 2V and Ll = vertchild(Vl)j. V0 is called the root
node. Fl represents the subproblems for Cll, i.e. a class Ck belongs
to a subproblem j iff Fl

kj ¼ 1.

Definition 2. A loss function ‘ : X � C � C ! ½0;1Þ returns the cost
of classification of an example, such that ‘(x,C,y(x)) = 0, y(x) = C,
where y(x) is the classifier prediction and C the true class.

Definition 3. The risk function R½f � ¼ E½‘ðf Þ� is the expected value
of the loss function, where f is the hypothesis implemented by
the classifier.

The training algorithm for HC recursively trains a classifier on
the given dataset, then finds a best possible partition into subprob-
lems (defined with the clustering matrix F). Dataset is then
partitioned into subproblem datasets and the whole training is re-
peated until no more divisions can be done. This process is
described in Algorithm 1.

Algorithm 1: Hierarchical classifier training. stopCondition()
may be a function of the number of classes, error level, tree
depth, etc. ncolumns(F) returns the number of subproblems
defined with F.

Algorithm: HCðDÞ
Input: D – training dataset
Output: HC classifier
Cl trainClassifierðDÞ
M  misclassificationMatrixðCl;DÞ
F findClustering(M)
V (Cl,F)
if ncolumns(F) > 1 then

child(V) ;
for l = 1 to ncolumns(F) do
Cl ¼ fCi : fil ¼ 1; i ¼ 1; . . . ;Kg
Dl ¼ fðx; cÞ 2 D : c 2 Clg
if not stopConditionðClÞ then

Vl  HCðDlÞ
child(V) child(V) [ {Vl}

end
end

end
return (V)

The F matrix is found using only the misclassification matrix of Cl
(frequently called a confusion matrix, e.g. in (Parker, 2001)).

Definition 4. A misclassification matrix M ¼ fmijgK
i;j¼1 for a classi-

fier Cl, is a stochastic K � K matrix such that mij = P(pr = Cjjtr = Ci)
(pr stands for predicted, tr stands for true), i.e. the likelihood that an
example from some true class Ci is predicted by Cl as being from
class Cj.

F matrix defines a number of subproblems, each characterized
by a different set of classes. Subproblem consists of classes, exam-
ples of which were similarly classified with the parent Cl and which
are found by a clustering algorithm findClustering(M) (Podolak,
2008; Podolak and Bartocha, 2009). This follows a hypothesis, that
if a classifier is weak, then classes incorrectly classified are usually
predicted to belong to classes which share some common charac-
teristics and are predominant (Podolak and Roman, 2009). There
are different approaches to classifiers selection for ensembles, eg.
by measuring their competence (Woloszynski and Kurzynski,
2011) or clustering. Authors have proposed a number of clustering
algorithms, mainly based on some machine learning approaches
(Podolak, 2008). In these methods the problem is to define an
appropriate cost function for clustering. Simple cost functions
may come from some heuristics assumed. On the other hand, better
results can be obtained if R[HC] risk estimation itself is used. But to
compute R[HC], subproblem classifiers risk value is needed. Hence
the approach proposed in this paper to evaluate it.

3. Subproblem risk evaluation

Let M be some training algorithm for a K-class classification
problem and let Cl be a classifier built withM using training set D.

Problem 1. Let a subproblem I be given. Is it possible to predict
R½ClI � using some properties of M?

3.1. Naïve solution

It may be noticed, that ifM is used to train both the parent and
child classifiers, then both would have some common characteris-

Fig. 1. Data flow in a very simple HC.
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