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a b s t r a c t

A central issue in dimension reduction is choosing a sensible number of dimensions to be retained. This
work demonstrates the surprising result of the asymptotic consistency of the maximum likelihood crite-
rion for determining the intrinsic dimension of a dataset in an isotropic version of probabilistic principal
component analysis (PPCA). Numerical experiments on simulated and real datasets show that the max-
imum likelihood criterion can actually be used in practice and outperforms existing intrinsic dimension
selection criteria in various situations. This paper exhibits and outlines the limits of the maximum like-
lihood criterion. It leads to recommend the use of the AIC criterion in specific situations. A useful appli-
cation of this work would be the automatic selection of intrinsic dimensions in mixtures of isotropic PPCA
for classification.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of high-dimensional data has become an important
problem in statistical learning and dimension reduction has a cen-
tral place in such settings. Among all existing methods, principal
component analysis (PCA) (Jolliffe, 1986) and its probabilistic ver-
sion (PPCA) (Tipping and Bishop, 1999a,b) are two popular tech-
niques. A central issue in dimension reduction is choosing a
sensible number of dimensions to be retained. We refer to Camastra
(2003) for a review on this topic. Two kind of approaches have been
proposed in the last decades for intrinsic dimension estimation.

Local methods. The local approach estimates the topological
dimension (defined as the basis dimension of the tangent space
of the data manifold) from the information contained in sample
neighborhoods. Fukanaga–Olsen’s algorithm (Fukunaga and Olsen,
1971) consists of estimating the rank of the variance matrix com-
puted locally on a Voronoi tessellation. In (Bruske and Sommer,
1998), the Voronoi tessellation is computed thanks to a topology
representing network. The algorithms proposed by Pettis et al.
(1979) and Verveer and Duin (1995) are based on the analysis of
the distances from one point to its nearest neighbors. The main
limitation of local approaches is their sensitivity to outliers.

Global methods. The global approach consists of unfolding the
whole dataset into a linear subspace. The estimated intrinsic

dimension is then the dimension of the resulting subspace. Such
methods can be divided into three subfamilies.

� Projection methods: The lower dimensional subspace can be
estimated by minimizing some projection errors. Examples of
such approaches include PCA (Jolliffe, 1986) sometimes associ-
ated with Cattell’s scree test (Cattell, 1966) and its non-linear
extensions based either on auto-associative models (Karhunen
and Joutsensalo, 1994; Chalmond and Girard, 1999) or Mercer
kernels (Schölkopf et al., 1998). Multidimensional scaling type
algorithms aim at finding the projection which (locally) pre-
serve the distances among data. Recent methods include LLE
(Roweis and Saul, 2000) and ISOMAP (Tenenbaum et al., 2000).
� Fractal-based methods: These techniques rely on the assumption

that the dataset is generated by a dynamic system. Their goal is
to estimate the dimension of the attractor associated to this
dynamic system. For instance, Kegl (2002) addresses this prob-
lem through the estimation of the box-counting dimension and
some heuristic methods are introduced in (Camastra and
Vinciarelli, 2002). Most of these methods are designed for
low-dimensional datasets since their complexity grows
exponentially with the dimension.
� Model-based methods: The use of a parametric model permits to

derive a maximum likelihood (ML) estimator of the intrinsic
dimension. For instance, in (Levina and Bickel, 2005), the
number of points in a small sphere is modeled by a Poisson
process. We also refer to MacKay and Ghahramani (2005) for
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a bias correction of the previous ML estimator. In a similar
spirit, Fan et al. (2009) uses a polynomial regression based on
a uniformity assumption. Several methods are based on a
Bayesian approach: Minka (2000) proposes a direct calculation
of the Laplace approximation of the marginal likelihood while
the Bayesian Information Criterion (BIC) (Schwarz, 1978) is an
asymptotic approximation of it. In (Fraley and Raftery, 2007),
a regularized BIC is introduced where the likelihood is evalu-
ated at the maximum a posteriori estimator instead of the max-
imum likelihood estimator. This criterion is used in
(Nyamundanda et al., 2010) to select the dimensionality in
PPCA with covariates. We also refer to Bishop (1999), Everson
and Roberts (2000) and Rajan and Rayner (1997) for alternative
approximations of the evidence. The underlying idea is that the
likelihood is an increasing function of the complexity and thus
of the dimensionality as well. This remark motivated the
authors to use penalized likelihood criteria.

In this paper, a constrained version of PPCA, called isotropic
PPCA, is considered. This model could appear as a restrictive model
but it can be useful in specific situations. In particular, it has been
proved to be efficient for classification problems in high dimension
(Bouveyron and Girard, 2009) where parsimonious models are
desirable. This paper demonstrates the surprising result that the
maximum likelihood criterion is asymptotically optimal in the case
of the isotropic PPCA model, the complexity of the model being not
an increasing function of the dimensionality. The ML criterion is
compared in different situations on simulated and real data to
two classical model selection criteria, AIC (Akaike, 1974) and BIC
(Schwarz, 1978), to the empirical scree-test of Cattell (1966), and
to the model-based methods (Fan et al., 2009; Levina and Bickel,
2005; Minka, 2000).

This paper is organized as follows. Section 2 introduces an iso-
tropic version of probabilistic PCA and considers the estimation of
its parameters. Section 3 focuses on the intrinsic dimension esti-
mation and demonstrates that the maximum likelihood method
can be used for this task in the context of the isotropic PPCA model.
Section 4 illustrates on simulations and real datasets the behavior
of the proposed approach in different situations and Section 5 gives
some concluding remarks.

2. Isotropic probabilistic PCA

In this section, after having recalled the Probabilistic PCA (PPCA)
model, it is reformulated using an eigenvalue decomposition. An
isotropic version of PPCA is then introduced and inference aspects
are addressed.

2.1. Factor Analysis, Probabilistic PCA and Extreme Component
Analysis

The Factor Analysis model (Bartholomew, 1987; Basilevsky,
1994) links linearly a p-dimensional random vector y to a d-dimen-
sional Gaussian vector x of latent variables:

y ¼ Hxþ lþ e:

The p � d factor matrix H relates the two random vectors and
l 2 Rp is a fixed location parameter. When d < p, the latent vector
x provides a parsimonious representation of y. In this context, d is
interpreted as the intrinsic dimension of y and is thus the parameter
of interest in this study. Without loss of generality, it can be as-
sumed that x � Nð0; IdÞ. If, moreover, the noise e is supposed to
be Gaussian e � Nð0;WÞ, where W is a p � p variance matrix, and
independent from x, then we end up with a Gaussian distribution
for the observations y, i.e. y � Nðl;RÞ where:

R ¼ HHt þW: ð1Þ

In such a case, the model parameters can be estimated by maximum
likelihood even though an iterative procedure is involved. To over-
come this practical difficulty, one can assume an isotropic noise
W = bIp with b > 0. This model is referred to as the Probabilistic
PCA model (Tipping and Bishop, 1999b) or to as the Sensible PCA
model (Roweis, 1998). The variance matrix of y can be also simpli-
fied as:

R ¼ HHt þ bIp:

In contrast to the general Factor Analysis model, all parameters l, b
and H benefit from closed form estimators. It is assume, without
loss of generality, that the columns h1, . . . ,hd of H are orthogonal,
i.e. HtH is diagonal and h1, . . . ,hd are eigenvectors of R associated
to the eigenvalues kh1k2 + b, . . . ,khdk2 + b. Consequently, the d eigen-
values associated to the latent subspace are always larger than the
eigenvalue b (with multiplicity p � d) associated to the noise sub-
space. In contrast, in the Probabilistic Minor Component Analysis
(PMCA) (Williams and Agakov, 2002) method, the converse
assumption is made. Finally, the two approaches are unified in
the Extreme Component Analysis (XCA) method (Welling et al.,
2003) where the noise e is supposed to be orthogonal to the col-
umns of H. This assumption yields W = b(I � H(HtH)�1Ht) in (1)
and thus the eigenvalues of R are kh1k2, . . . ,khdk2 and b. Since no
assumption is made on their relative magnitudes, PPCA and PMCA
may be interpreted as particular cases of XCA.

2.2. Isotropic probabilistic PCA

Similarly, it may be of interest in specific contexts, such as high-
dimensional classification, to consider an isotropic factor matrix. In
this case, the matrix H can be rewritten as H ¼

ffiffiffiffiffiffiffiffiffiffiffi
a� b
p

V with a > b
and where V is a p � d matrix such that VtV = Id. Thus, the variance
matrix of the observation y is given by:

R ¼ ða� bÞVVt þ bIp:

Let U be a p � (p � d) matrix such that Q :¼ [V,U] is an orthogonal
p � p matrix containing p eigenvectors of R. Introducing D = QtDQ
the diagonal matrix of eigenvalues, an alternative, and more intui-
tive, parametrization of R is

R ¼ QDQ t :

Moreover, the matrix D associated with the isotropic PPCA model
has the following form:

with a > b. Let us emphasize that, since H is supposed to have only
two different eigenvalues, the assumption a > b is made without
loss of generality and thus this model can also be interpreted as
an isotropic XCA model.

The isotropic PPCA model is parametrized by l, Q, a, b and d. A
graphical representation of the isotropic PPCA model is given by
Fig. 1. As it can be observed on Fig. 2 which illustrates the model
in a 3-dimensional space, such a model assumes that the distribu-
tion is spherical and modeled by a within the d-dimensional latent
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