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a b s t r a c t

Understanding how the architecture of neuronal populations contributes to brain function requires
three-dimensional representations and analyses. Neuroanatomical techniques are available to locate
neurons in animal brains. Repeating an experiment in different individuals yields a collection of point
patterns from which common organization principles are generally difficult to extract. We recently
addressed the problem of generating statistical density maps to integrate replicated point pattern data
into meaningful, interpretable representations. Applications to different neuroanatomical systems illus-
trated the ability of our method to reveal organization rules that cannot be perceived directly on raw
data. To make the method practicable for further applications, the aim of the present paper is to establish
general guidelines for appropriate parameter tuning, valid result interpretation as well as efficient imple-
mentation. Accordingly, we characterize the method by analyzing the role of its main parameter, by
reporting results on its statistical properties and by demonstrating its robustness, using both simulated
and real neuroanatomical data.

� 2011 Published by Elsevier B.V.

1. Introduction

Many biological studies entail the analysis of the three-
dimensional (3D) position of structures that can be assimilated to
points within cells, tissues or organs. Because experiments are re-
peated, typical datasets consist of sets of 3D point positions. A
key issue is then to generate readable and meaningful statistical
representations from these data.

Animal neuroanatomy is one of the many research fields that
call for such developments. In the nervous system, neuronal popu-
lations are characterized by their morphological, biochemical and
physiological properties as well as by their 3D organization. Under-
standing brain function therefore requires accurate representa-
tions and quantitative analyses of the spatial arrangement of
these populations. Neurons of a population can be identified and
located in an animal brain by using cell labeling techniques and
by recording their 3D positions with microscopic imaging. Results
from such experiments are affected by two sources of variability.
The first one is biological: the actual number and positions of neu-
rons in a population vary from one animal to the other. The second

one is experimental: for a number of technical reasons, only a
random subset of the population is generally labeled in one animal.
Consequently, labeling the same population in several animals
yields a collection of different 3D point sets. These fluctuations
can be large enough to hide any organization rule in the collection
of individual patterns.

To deal with variability, statistical methods are required. The
theory of spatial point processes (Diggle, 2003) is the basis for most
existing studies concerned with the spatial organization of neuron
populations. In particular, summary statistics based on distance
functions have been widely used for 2D and 3D analyses. However,
whether they process point patterns independently (Armstrong,
2006; Bjaalie and Diggle, 1990; Bjaalie et al., 1991; Cotter et al.,
2002; König et al., 1991; Schmitt et al., 2000) or integrate replicated
data (Baddeley et al., 1993; Diggle et al., 1991, 2000; Landau et al.,
2004; Reed and Howard, 1997; Webster et al., 2006), approaches
based on summary statistics yield scalar descriptors and do not
provide explicit 3D representations of spatial organizations. Such
representations can be obtained by computing neuron intensity
(mean number of cells by unit area or volume) maps. In 3D, prevail-
ing approaches consist in generating 3D histograms of cell count
(Nadasdy and Zaborszky, 2001; Odeh et al., 2005; Vibert et al.,
1976; Zaborszky et al., 2005) or in computing kernel density esti-
mates (Kopel et al., 2009). However, such methods generate density
maps from single point patterns only.
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In a recent neuroanatomical study, we proposed a solution
based on the theory of spatial point processes and on distances
to kth nearest cells to integrate replicated patterns and to generate
statistical 3D intensity maps of neuronal distributions. In different
neurobiological systems, this strategy revealed organization rules
that were difficult, if not impossible, to detect on raw data (Burguet
et al., 2009; Schwarz et al., 2010). The purpose of the present paper
is to establish general guidelines for appropriate parameter tuning,
valid result interpretation as well as efficient implementation,
which are required to make the method practically useful for a
large range of further applications. Therefore, we investigate and
establish the meaning and the influence of the main parameter
of the method, i.e. the rank k of the neighboring cells considered
for intensity estimation. Further, we characterize the statistical
properties of the method and evaluate its robustness to departures
from the underlying parametric hypothesis (i.e., the assumption of
locally, completely random distribution). Lastly, we address the
implementation issue. Based on the distances to neighboring
points, the method is indeed potentially costly and efficient algo-
rithms are required.

The paper is organized as follows. The intensity mapping meth-
od is described in Section 2. Theoretical properties of the local
intensity estimator are discussed. Computational aspects and visu-
alization techniques are also described. Results obtained on simu-
lated and real neuroanatomical data are reported in Section 3 and
discussed in Section 4.

2. Intensity estimation and mapping

2.1. Definitions and problem statement

A spatial point process is a stochastic process generating sets of
points in Rd. A realization of such a process is a spatial point pat-
tern and a sample of the process is a set of spatial point patterns.
In the following, ‘‘points’’ will refer to elements of the spatial pat-
terns and ‘‘positions’’ to arbitrary elements in Rd. The intensity k(p)
is the average number of points per unit volume at position p 2 Rd.
The process is homogeneous if k is constant throughout space and
inhomogeneous otherwise.

In the spatial point process theory, the homogeneous Poisson
process is a reference model corresponding to complete spatial ran-
domness (CSR). In this model, the intensity k does not vary with po-
sition; the number N(R) of points in any space region R of volume jRj
follows a Poisson distribution with parameter kjRj; the N(R) points in
R are independently and uniformly distributed over R.

We will focus here on the 3D case (d = 3) because of its rele-
vance for biological studies in general, but the method can be ap-
plied to other dimensions as well. We are given a sample of 3D
point patterns generated by a given spatial point process. The
objective is to estimate the intensity of the process and to build
a 3D map of intensity variations with space position. We assume
that the process may be inhomogeneous, but that the intensity in
the neighborhood of any position varies slowly enough to be con-
sidered as locally constant. Thus, points are locally distributed
according to the CSR model.

2.2. Local intensity estimation

Let n be the sample size (Fig. 1A) and p a position (Fig. 1B). To
simplify notations, the local intensity k(p) will be noted k in this
subsection. Let Xik be the distance between p and its kth nearest
point in the ith set. Under CSR, the probability density function
of Xik depends on k and is:

f ðxikÞ ¼
ð4kpÞk

3k�1ðk� 1Þ!
x3k�1
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3

x3
ik

� �

The log-likelihood of the distances X1k, . . . ,Xnk is:
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where C is independent of k. Maximizing Eq. (1) with respect to k
yields the maximum likelihood estimator ~k of k:

~k ¼ nk
4p
3
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ik

As previously shown (Burguet et al., 2009), ~k is biased (the expected
value of ~k is not equal to the true value k), but a simple correction
yields the following unbiased estimator:

k̂ ¼ nk� 1
4p
3

Pn
i¼1x3

ik

ð2Þ

of variance (Burguet et al., 2009):

Vðk̂Þ ¼ k2=ðnk� 2Þ ð3Þ

2.3. Local intensity estimator properties

Since it is unbiased and since Vðk̂Þ ! 0 as n ?1, the estimator
k̂ is consistent (its distribution concentrates more and more around
k as the sample size increases). Moreover, it can be shown from Eq.
(1) that the Cramér-Rao bound (the theoretical lower bound of the
estimator variance) is k2/nk. Thus, the efficiency of k̂ (the ratio be-
tween this bound and the estimator variance) is equal to (nk � 2)/
nk and converges towards 1 when n grows. Hence, k̂ is asymptoti-
cally efficient. When k increases, the estimator variance converges
toward 0 and its efficiency toward 1. Thus, k can be adjusted to
control the degree of smoothing of the intensity estimate. Besides,
larger values for k are expected to provide more accurate
estimations.

Finally, in most practical situations (in particular when dealing
with neuron populations), it is reasonable to assume that no two
points of the same pattern can be located at the same position.
Hence, imposing k P 2 guarantees that xik > 0, for all i, and thus
that k̂ is finite. Moreover, this ensures that its variance is positive.

2.4. Intensity map generation and visualization

To generate a 3D intensity map, the volume of interest is
discretized using a regular grid whose resolution is controlled by
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Fig. 1. Intensity mapping. (A) Sample of point patterns (n = 3). Bounding box:
common volume of interest. (B) Local intensity estimation at position p as a
function of the distances to the kth nearest neighbors in all patterns (k = 2). (C)
Intensity map generation by estimating the local intensity at every node of a grid
covering the volume.
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