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a b s t r a c t

Within the scope of the Anderson–Newns model of adsorption the Na, K, and Cs submonolayer films
on graphite are considered. The adatoms dipole–dipole repulsion is taken into account with the use of
the Muscat approach. The calculated work function variations are in a reasonable agreement with the
experimental data. We have found that the charges of K, Na, and Cs adatoms are Z0 = 0.22, 0.38, and 0.41
for the zero coverage limit and ZML = 0.09, 0.15, and 0.16 for the monolayer coverage correspondingly.
The crude estimations of the single adatom binding energies got Eb = 0.76, 0.67, and 0.37 eV for Na, K, and
Cs accordingly.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the AM atoms adsorbed on graphite can
form two-dimensional (2D) commensurate superstructures [1–5].
AM adatoms act as donors changing the free carriers concentration
of graphite. AM deposition on graphite results also in the decrease
of the system work function �. The main goal of our work is to
describe work function variations �� for the AM/graphite system
within a semi-empirical simple model.

Alkali metals (AM) adsorbed on solid surfaces have been tradi-
tionally considered as the model adsorbates [6]. One of the first
theoretical approach to the problem has been put forward by
Newns [7], who applied Anderson Hamiltonian [8] (see Appendix
A) for the description of a single one-electron atom adsorp-
tion on metal surface. Later Muscat and Newns have generalized
this approach for the adsorbed overlayer [9], taking into account
dipole–dipole repulsion of adatoms. This permits them to calculate
the wok function decrease �� as a function of the coverage � for
AM submonolayers on a model metallic substrate. In what follows
we will refer to this approach as to the Anderson–Newns–Muscat
(ANM) model.

It is well known that in the case of AM deposition work function
variations ��(�) demonstrate the same qualitative character for
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metallic [6], semiconductor [10–12], and semimetallic [1–5] sub-
strates. The main features of ��(�) variations are as follows: (i)
fast initial drop at small coverages (� � 1); ii) saturation for nearly
monolayer (ML) coverages (� → 1); (iii) possible pronounced min-
imum at intermediate coverages [13–15]. Thus, one may conclude
that for all AM adsorption systems some unified scheme for the
��(�) calculation can be applied. One of such a scheme is the use
of ANM model.

2. Model

We begin postulating adatom density of states (see Appendix A)
in the form:

�a(ω) = 2
�

�

(ω − εa)2 + � 2
, (1)

where εa and � are the quasilevel position and half-width; ω is the
energetic variable; the factor 2 is due to the two possible electron
spin orientations. This expression is exactly the same as in the case
of an adsorption on metals within the wide-band and non-magnetic
approximations for the Anderson model [7] (see Appendix A).

Now it is easy to find the adatom occupation number n for zero
temperature by the integration of Eq. (1):

n = 2
�

cot−1 ˝

�
, (2)

where ˝ = (εa − EF) is the energy gap between the adatom εa and
Fermi EF levels. The adatom charge Z = 1 − n. If the dipole–dipole
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repulsion between adatoms is taken into account [9], than Eq. (2)
becomes

Z(�) = 2
�

tan−1 ˝ − 
�3/2Z(�)
�

. (3)

Here the coverage � = N/NML, where N and NML are the adatom
surface concentrations in the layer and the 1 ML correspondingly;

 = 2e2�2N3/2

ML Ā is the constant of the dipole–dipole repulsion; � is
the adatom-substrate separation; e is the positron charge; Ā∼10
is the structural factor, which is 2D analog of the bulk Madelung
constant [16].

Work function variation due to adsorption is determined as fol-
lows:

��(�) = −˚�Z(�), (4)

where the scaling factor for work function variation ˚ = 4�e2NML�.
We have to underline here that the ANM model completely

ignores any structural transitions which take place for the real
AM/graphite systems with the increase of the coverage [1–5]. Thus,
we consider the � increase effect as a purely continuous compres-
sion of the adatoms overlayer. As we suppose, it can be done since
the dominant channel of the interactions within the adlayer is the
dipole–dipole repulsion, which is a long-range one and possesses
cylindrical symmetry. Moreover, as it has been shown in Ref. [16],
parameter Ā depends only slightly on the overlayer geometry.

3. Estimations of the ANM model parameters and
calculations

3.1. Potassium on graphite

We begin with the K adsorption since it is this case that is
studied most thoroughly. Let accept the monolayer adatoms con-
centration NML = 4.8 × 1014 cm−2 as in Refs. [1,3]. It is worthy to
note here that if we take the bulk nearest neighbor (n.n.) sep-
aration as dn.n = 4.525Å [17] and estimate the concentration NML

as (dn.n(K))−2, we get 4.88 × 1014 cm−2, i.e., very close to the pre-
ceding value. Accepting the atomic radii of K and C to be equal
to ra(K) = 2.36 and ra(C) = 0.77 Å [18], we find that the C–K bond
length is ra(C) = d = ra(K) + ra(C) = 3.13 Å. Since the n.n. separation
in graphite is b = 1.42 Å, then the perpendicular K-graphite spac-

ing d⊥ =
√

d2 − b2 = 2.79 Å . In what follows we will consider two
possible schemes for the estimation of �. First one is based on the
assumption that in the zero coverage limit (� → 0) adatom is in
nearly ionic state, while for the ML its state transfers to nearly
atomic. Therefore, it is natural to put � = [ra(K) + ri(K)]/2, where
ri(K) = 1.33 Å is the K ionic radius [18]. That gives � = 1.845 Å (case I).
From the other hand we can take � = d⊥ − ra(C) = 2.02 Å (case II). In
both cases we assume that mirror plane coincides with the “tops”
of the surface C atoms.

We will estimate energy parameter ˝ using the following
expression:

˝ = I − � + e2

4�
, (6)

where the ionization energy I for potassium is 4.34 eV and the
graphite work function � is 4.7 eV [1,3]. The last term in the right-
hand-side of Eq. (3) describes the shift of the adatom quasilevel due
to the Coulomb repulsion between adatom and substrate electrons
[19]. This gives ˝ = 2.31, ˚ = 16.02, 
 = 10.31 eV for the case I and
˝ = 2.14, ˚ = 17.54, 
 = 12.36 eV for the case II. Note that in both
cases we put Ā = 10.

Now turn to the analyses of the experimental data [3] and
consider the initial drop of the work function, described by the
derivative ( ∂ ��/∂ �) in the zero coverage limit � → 0. Using Eq.

Table 1
Model parameters and calculated adatom charges (� in Å; ˝, � , 
, and ˚ in eV,
Z0 ≡ Z(0), ZML ≡ Z(� = 1)).

Adsorbate Parameter � ˝ � 
 ˚ Z0 ZML

Na Case I 1.39 2.05 5.45 11.66 19.12 0.23 0.10
Case II 1.44 1.96 5.41 12.51 19.80 0.22 0.09

K Case I 1.85 2.31 3.45 10.31 16.03 0.38 0.15
Case II 2.02 2.14 3.57 12.36 17.55 0.34 0.12

Cs Case I 2.24 2.32 3.11 10.70 15.40 0.41 0.16
Case II 2.31 2.27 3.17 11.38 15.88 0.40 0.14

(4) we get(
∂�(�)

∂�

)
�→0

= −˚Z0, (7)

where Z0 ≡ Z(� = 0) is the initial adatom charge. Taking from the
data the ratio ��/�� for the linear part of the ��(�) dependence,
we can calculate Z0. Than, using Eq. (3), we find ˝/� = tg(�Z0/2).
This ratio gives 0.67 (case I) and 0.60 (case II). Now we obtain
� = 3.45 and 3.57 eV for the cases I and II correspondingly. All the
parameters are listed in Table 1. The results for the ��(�) depen-
dence are show in Fig. 1 in comparison with the experimental data
[3] (see this paper for the much more details of the experimental
��(�) dependence). It is easy to see from Fig. 1 that the case I
gives the better correspondence with the experiment than the case
II. But in the limit � → 1 it is the case II that describes the derivative
( ∂ ��/∂ �) better than the case I. The largest discrepancy occurs at
the intermediate coverage (� ∼ 0.3–0.6), where the maximal rel-
ative error 
 = |(��exper. − ��theor.)/��exper.| for the case I is less
than 15%. Fig. 2 demonstrates the Z(�) dependence for the case
I. The obtained charge decrease with � corresponds the adatoms
depolarization due to their dipole repulsion.

3.2. Sodium on graphite

The adsorption of Na atoms on graphite has been experimentally
studied in Ref. [4]. Following [1,4], we accept NML = 7.6 × 1014 cm−2.
Taking for the bulk n.n. spacing dn.n.(Na) = 3.659 Å [17], we arrive at
NML = 7.47 × 1014 cm−2, which is again rather close to the preced-
ing value. Since ra(Na) = 1.86 Å [18], we find that the C–Na distance

Fig. 1. Work function variation n �� vs. coverage � for K adatoms on graphite.
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