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a b s t r a c t

The present paper considers the problem of partitioning a dataset into a known number of clusters using
the sum of squared errors criterion (SSE). A new clustering method, called DE-KM, which combines dif-
ferential evolution algorithm (DE) with the well known K-means procedure is described. In the method,
the K-means algorithm is used to fine-tune each candidate solution obtained by mutation and crossover
operators of DE. Additionally, a reordering procedure which allows the evolutionary algorithm to tackle
the redundant representation problem is proposed. The performance of the DE-KM clustering method is
compared to the performance of differential evolution, global K-means method, genetic K-means algo-
rithm and two variants of the K-means algorithm. The experimental results show that if the number of
clusters K is sufficiently large, DE-KM obtains solutions with lower SSE values than the other five
algorithms.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Clustering (Jain et al., 1999; Kaufman and Rousseeuw, 1990) is
an unsupervised classification technique which has applications in
many areas, such as social sciences, biology, medicine and signal
processing. Clustering can be described as dividing a set of objects
into K disjoint groups, called clusters, in such a way that objects
within one cluster are very similar, whereas objects in the different
clusters are very distinct. In some applications, e.g. vector quanti-
zation (Gersho and Gray, 1992), the number K of clusters is known
a priori. Alternatively, this number can be determined during the
clustering process. In this paper, it is assumed that the number
of clusters is known.

Given the dataset consisting of N feature vectors
X = {x1, . . . ,xi, . . . ,xN}, where xi 2 RM , its partition P can be defined
as P = {C1,C2, . . . ,CK}, where 8i–jCi \ Cj ¼ ;;

SK
i¼1Ci ¼ X; 8iCi – ;.

Thus, the clustering problem can be formulated as the problem
of searching for a partition which minimizes a certain criterion
function. One of the most popular criterion functions is the sum
of squared errors (SSE) which can be defined as:

SSEðX;PÞ ¼
XK

i¼1

X
xj2Ci

kxj �mik2
; ð1Þ

where k�k is the Euclidean distance and mi is the centroid of the
cluster Ci, which can be computed as the sample mean:

mi ¼
1
jCij

X
xj2Ci

xj: ð2Þ

The clustering problem with SSE as the clustering criterion is
NP-hard for K P 2 (Aloise et al., 2009). Even for moderately sized
datasets, heuristics, such as K-means algorithm (MacQueen,
1967), must be used to solve it in reasonable time. Unfortunately
these heuristics are prone to being trapped in a local minimum
of the SSE criterion.

There are several methods of dealing with the problem of local
minima. The most straightforward approach involves running the
K-means algorithm many times, each time starting with random
initial conditions. Another approach uses a global optimization
method, such as simulated annealing (Selim and Alsultan, 1991)
or an evolutionary algorithm (EA). EAs (Michalewicz, 1996) are
stochastic search techniques inspired by the concept of Darwinian
evolution. Unlike local optimization methods, e.g. K-means, they
simultaneously process a population of problem solutions, which
gives them the ability to escape from local optima. Differential evo-
lution (DE) (Storn and Price, 1997) is a relatively new EA, which has
been successfully applied to many optimization problems.

In the paper we describe a DE-KM (differential evolution with
K-means) algorithm which is able to recover high quality cluster-
ing solutions in terms of the SSE criterion. The main contribution
of DE-KM is an incorporation of the K-means algorithm into the
process of DE. The DE-KM uses the K-means algorithm in two
ways. Firstly, the algorithm is used to obtain the centroids for each
initial solution in the DE population. Secondly, the K-means
algorithm is employed to fine-tune each new solution obtained
by the mutation and crossover operators of the DE. In both
cases, the K-means algorithm is run until convergence. In the
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experiments the DE-KM algorithm was applied to real-life datasets
and its performance was compared with the performance of its
two key components, namely DE and the K-means method.

The rest of this paper is organized as follows. The next section
discusses research related to our work. Section 3 contains a
description of the K-means algorithm. In Section 4 the details of
the proposed DE-KM method are described. Section 5 presents
the results of computational experiments. The last section of this
paper contains conclusions.

2. Related research

Many EA-based approaches to the problem of clustering have
been proposed (see Hruschka et al., 2009 for a comprehensive re-
view). The main difference between them is the encoding of the
partitions by elements of population (chromosomes). The most
natural encoding (e.g., Murthy and Chowdhury, 1996; Krishna
and Murty, 1999) uses chromosomes consisting of N elements with
integer values from the interval of [1,K], where N is the size of the
learning set and K is the number of clusters. The ith element of the
chromosome represents the number of a cluster to which the fea-
ture vector xi belongs. For instance, for N = 5 and K = 2 a chromo-
some 21121 encodes the following partition of the learning set:
{{x2,x3,x5}, {x1,x4}}. This approach is called a label-based represen-
tation (Hruschka et al., 2009), since each gene in a chromosome de-
fines a cluster label of an object. A significant shortcoming of this
representation is its redundancy. It is easy to notice that each par-
tition can be encoded by K! different chromosomes. For instance,
the chromosomes 21121 and 12212 encode the same partition.

In an alternative approach (Fränti et al., 1997; Hall et al., 1999;
Maulik and Bandyopadhyay, 2000; Paterlini and Krink, 2006; Las-
zlo and Mukherjee, 2007), which is employed in this paper, a
real-valued chromosome encodes a set of K cluster prototypes
(usually centroids). The length of a chromosome is MK, where M
is the dimension of the feature space. The first M elements of the
chromosome encode the coordinates of the first cluster centroid,
the next M elements encode the coordinates of the second cluster
centroid, and so forth. To obtain a partition of the dataset, each fea-
ture vector is allocated to the cluster represented by the closest
centroid. This approach, called a centroid-based representation
(Hruschka et al., 2009), is also flawed by the redundant represen-
tation problem, since any permutation of centroids in a chromo-
some will result in the same partition of the dataset.

A disadvantage of EAs, as compared to local search methods, is
slower convergence. This shortcoming is particularly severe in the
application of EAs to partitional clustering, when computation of
an objective function, e.g. (1), requires a pass over the whole learn-
ing set X. For the centroid-based representation, the complexity of
the computation of (1) is O(NMK). It is a well established fact
(Goldberg and Voessner, 1999; Culberson, 1999) that a combina-
tion of a local search with an EA can achieve much better efficiency
than the EA only. Accordingly, some researchers integrated the K-
means algorithm into their EAs. To fine-tune solutions obtained by
the mutation, Krishna and Murty (1999) proposed a K-means oper-
ator, which performs a single iteration of the K-means algorithm. A
similar technique was used by Maulik and Bandyopadhyay (2000).
Fränti et al. (1997) employed two iterations of K-means to improve
each new solution obtained by recombination operators of a genet-
ic algorithm. In contrast to these approaches, the method of Laszlo
and Mukherjee (2007) fine-tunes each solution by running the K-
means algorithm until convergence.

Differential evolution (DE) is an evolutionary algorithm pro-
posed by Storn and Price (1997), employing a representation based
on real-valued vectors. It has been successfully applied to many
optimization problems. DE is based on the usage of vector

differences for perturbing the population elements. A version of
DE with self-adaptation of control parameters was described by
Brest et al. (2006).

The idea of using DE for partitional clustering is not new. Pater-
lini and Krink (2006) employed a centroid-based representation to
investigate the performance difference between DE, genetic algo-
rithm and particle swarm optimizer. The results indicated that
the performance of DE is superior to the performance of the other
two approaches. Omran et al. (2005) also used the centroid-based
representation in the application of DE to clustering of image pix-
els. A similar experiment was performed by Sudhakar et al. (2010).
Das et al. (2007) modified the centroid-based representation by
augmenting each centroid with a real number from the interval
[0,1], called an activation threshold. If the threshold has a value
greater than 0.5, the corresponding centroid is used in the parti-
tioning of the dataset. Otherwise, the centroid remains inactive.
In this way, their ACDE (Automatic Clustering with DE) algorithm
is able to discover the number of clusters by optimizing a cluster
validity index. Tian et al. (2009) combined DE with the K-harmonic
means local optimization algorithm (KHM) (Zhang et al., 1999). In
their approach one iteration of KHM is applied to all DE population
members after the selection. Their results indicate that the hybrid
DE-KHM method optimizes a criterion based on the harmonic
mean better than DE or KHM. However, as far as we know, no
application of a combination of DE with K-means to optimize SSE
(1) has been proposed.

3. K-means algorithm

The K-means algorithm (MacQueen, 1967) is the most popular
clustering algorithm minimizing SSE (1). It is an iterative algorithm
which can be described by the following steps.

1. Choose initial centroids {m1, . . . ,mK} of the clusters {C1, . . . ,CK}.
2. Calculate new cluster membership. A feature vector xj is

assigned to the cluster Ci if and only if

i ¼ arg min
k¼1;...;K

kxj �mkk2: ð3Þ

3. Recalculate centroids for the clusters according Eq. (2).
4. If none of the cluster centroids have changed, finish the algo-

rithm. Otherwise go to Step 2.

The K-means algorithm is easy to implement and computation-
ally efficient. However, it has an essential deficiency. Although it
converges in a finite number of iterations (Selim and Ismail,
1984), it can be easily trapped in a local minimum of the SSE crite-
rion function (1). Consequently, the quality of the solution ob-
tained by means of the algorithm is heavily dependent on its
initial conditions (the centers of initial clusters).

4. DE-KM algorithm

4.1. Differential evolution

Several versions of DE have been proposed. For the purpose of
this study the most common variant is used, which, according to
the classification proposed by Storn and Price (1997), can be de-
scribed as DE/rand/1/bin.

Like all EAs, DE maintains a population of S solutions of the opti-
mization problem. At the start of the algorithm, members of the
population are initialized randomly with the uniform distribution.
Then DE performs multiple iterations in three consecutive steps:
reproduction (creation of a temporary population), computing of
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