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a  b  s  t  r  a  c  t

A  numerical  model  of  the  adhesive  contact  between  a  rigid  smooth  sphere  and  an  elastic  textured  surface
based  on  the Lennard–Jones  interatomic  potential  law  and  the  Hamaker  summation  method  is estab-
lished.  Textures  are  considered  by introducing  the texture  height  distribution  into  the  gap  equation.
Simulation  results  show  that  the pull-off  force  on textured  surfaces  decreases  compared  to  that  on  smooth
surfaces.  Furthermore,  effects  of  sphere-shaped  textures  on reducing  adhesion  are  more  obvious  than
cylinder-shaped  or cube-shaped  textures  when  the  coverage  area  ratio,  maximum  height  and  interval  of
textures  are  fixed.  For  surfaces  with  sphere-shaped  textures,  variation  trends  of  the mean  pull-off  force
with  texture  density  are  not  monotonous,  and  there  exists  a certain  range  of  texture  densities  in which
the  mean  pull-off  force  is  small  and  its variation  is  insignificant.  In addition,  the  pull-off  force  depends
also  on  the  maximum  height  and  radius  of  textures.  On  one  hand,  if  the  texture  radius  is fixed,  larger  max-
imum  height  results  in  smaller  pull-off  force,  and  if  the  maximum  height  is  fixed,  the  pull-off  force  tends
to  increase  almost  linearly  with increases  in  texture  radius.  On  the  other  hand,  if the  height-diameter
ratio  of textures  is  fixed,  the  pull-off  force  reaches  a minimum  at an  optimum  texture  radius  or  maximum
height.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

As the size of devices shrinks to micro- and nano-scales, the
surface-to-volume ratio increases obviously [1,2], and thus some
unwanted adhesion failures due to surface forces occur frequently
in micro/nano-devices such as micro switches [3]. To reduce this
kind of adhesion-induced failure, micro/nano-texturing techniques
are used to produce textured surfaces with nanoparticles [4],
micro/nanometer-sized pillars [5] or grooves [6]. Early efforts on
experimental studies have demonstrated that adhesive contact
behaviors of textured or rough surfaces greatly depend on the pat-
tern shape, distribution form, density, height and radius [4,7–9].

As far as the theoretical analysis of adhesive contact between
textured or rough surfaces is concerned, three kinds of analytical
models are often employed. The first kind is based on integrations of
van der Waals interactions but neglects elastic responses of multi-
asperities, such as the models introduced by Dejeu et al. [10], DelRio
et al. [11], Katainen et al. [12] and Laitinen et al. [13]. The sec-
ond kind introduced by Liu et al. [9] and Li et al. [14], combines
both the approach of integrations of van der Waals interactions
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and the surface energy approach used in JKR [15] or DMT  [16]
theories so that elastic deformations can be taken into account.
But in this kind of models, a single average asperity with a radius
related to the RMS  surface roughness is used to represent close-
packed multi-asperities. The third kind is established according
to the statistical method [17,18] which combines the GW theory
[19] or the MB  fractal theory [20] with JKR [15], DMT  [16] or M-D
[21] models, but sphere/substrate interactions are neglected. Apart
from the respective problems of the above three kinds of models,
common problems of them are that interactions between adja-
cent asperities and variations of the pull-off force with contact
locations between rough surfaces [22] are not considered. How-
ever, when designing micro/nano-textured surfaces, the interval
and height of textures may  be varied in a large range, and thus inter-
actions between adjacent textures and pull-off force data scatters
may  become significant. Consequently, the above analytical models
fail to accurately describe the adhesive contact between textured
surfaces with different designing parameters.

As for the numerical method, the existing models are mainly
based on the Hamaker summation method [23] but only limited
to studies of the adhesive contact between smooth surfaces. The
Hamaker summation method is based on a microscopic theory
which obtains the interaction force between macroscopic bodies by
the pairwise additivity of molecular interactions. According to this
method, Argento et al. [24] has proposed a surface formulation, in
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Fig. 1. Adhesive contact between an elastic substrate 1 including surface textures and a rigid sphere 2. (a) 3D plot, and (b) enlarged cross-sectional profile.

which the volume-integrated intermolecular force between bodies
is partitioned to obtain a distribution of effective surface tractions.
The widely used Derjaguin approximation [25] can be considered
as a simplification of Argento’s surface formulation when radii of
spheres are larger than their separation [26,27]. Recent studies
based on Argento’s approach [28,29] have further suggested that
the Hamaker summation method is more precise than the Der-
jaguin approximation when spheres approach the nano-scale. For
textured surfaces designed to modulate the adhesive performance,
the size of textures may  be very small, and thus the Hamaker sum-
mation method has more potential to be extended to analyze the
adhesive contact between textured surfaces if the texture geometry
is considered.

This work is undertaken to establish a numerical adhesive con-
tact model for textured surfaces and provide insight into effects
of the texture shape, density, maximum height and radius on the
adhesive performance. To do this, the texture height distribution is
introduced to the surface gap, and the interaction force is calculated
based on the Hamaker summation method and the Lennard–Jones
interatomic potential law.

2. Theoretical model

A schematic drawing of the adhesive contact between an elas-
tic substrate 1 including surface textures with the height of Sp(x, y)
and a rigid smooth sphere 2 is shown in Fig. 1. It is assumed that the
contact scale under investigation is small enough so that adhesive
effects need to be considered, but sufficiently large for the contin-
uum theory to be valid. The gap h between the bottom of the sphere
and the substrate surface can be expressed as:

h(x, y) = −  ̨ − Sp(x, y) + u(x, y) (1)

where  ̨ is the approach between the bottom of the rigid sphere and
the undeformed substrate. u(x, y) denotes the elastic deformation of
the substrate and can be calculated by using the Boussinesq integral
[30]:

u(x, y) = 1
�E∗

∫ ∫
˝

p(�, �) d�d�√
(x − �)2 + (y − �)2

(2)

where E* denotes the effective elastic modulus. p(x, y) is the local
pressure distribution caused by molecular interactions between the
sphere and the substrate.

The total interaction force on substrate 1 exerted by sphere
2 can be obtained by integrating the Lennard–Jones interatomic
potential w(s) with all molecules in the body and converting the

double volume integral into the surface integral with an intersur-
face stress tensor [24], which can be expressed as:

F = �1�2

∫
V2

∫
V1

∇2w(s) dV1 dV2

= �1�2

∫
S̄2

∫
S̄1

n2(G · n1) dS̄1 dS̄2 (3)

where �1, �2 and n1, n2 are number densities of molecules and unit
normal vectors of surfaces, respectively. V1, V2 and S̄1, S̄2 denote
the volume and surface of 1 and 2, respectively. s is the distance
between two  molecules and G is a defined intersurface force kernel
which can be obtained as:

G = x2 − x1
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4e[(�/t)12 − (�/t)6]t2 dt

= 4e(x2 − x1)

(
�12

9s12
− �6
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where e is the minimum potential, and � is the distance at which
the potential is zero.

From Eq. (3), the interaction force per unit area on the surface
element of substrate 1 by the surface of sphere 2 can be written as:

f = (�1�2

∫
S̄2

n2GdS̄2) · n1 = b · n1 =

⎡
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=

⎡
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⎤
⎥⎦ (5)

where b is the intersurface stress tensor.
As the elastic deformation of substrate 1 is small, only the ver-

tical component of f is considered in the present problem, which
is:

fz = bzxn1x + bzyn1y + bzzn1z (6)
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