Accepted Manuscript

Title: Synthesis and properties of polyamide-Ag₂S composite based solar energy absorber surfaces

Author: Valentina Krylova Jonas Baltrusaitis

PII: S0169-4332(13)01108-2

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2013.06.009

Reference: APSUSC 25812

To appear in: APSUSC

Received date: 8-11-2012 Revised date: 25-4-2013 Accepted date: 2-6-2013

Please cite this article as: V. Krylova, J. Baltrusaitis, Synthesis and properties of polyamide-Ag₂S composite based solar energy absorber surfaces, *Applied Surface Science* (2013), http://dx.doi.org/10.1016/j.apsusc.2013.06.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis and properties of polyamide-Ag₂S composite based solar energy absorber

Valentina Krylova¹ and Jonas Baltrusaitis^{2,*}

1. Department of Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19,

LT-50254, Kaunas, Lithuania; valentina.krylova@ktu.lt

2. PhotoCatalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of

Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE

Enschede, The Netherlands

Abstract

Silver sulfide (Ag₂S), an efficient solar light absorber, was synthesized using a modified

chemical bath deposition (CBD) method and polyamide 6 (PA) as a host material via solution

phase reaction between AgNO₃ and Na₂S₂O₃. X-ray diffraction (XRD) data showed a single, α-

Ag₂S (acanthite), crystalline phase present while surface and bulk chemical analyses, performed

using X-ray photoelectron (XPS) and energy dispersive (EDS) spectroscopies, showed 2:1 Ag:S

ratio. Direct and indirect bandgaps obtained from Tauc plots were 1.3 and 2.3 eV, respectively.

Detailed surface chemical analysis showed the presence of three distinct sulfur species with

majority component due to the Ag₂S chemical bonds and minority components due to two types

of oxygen-sulfur bonds. Conductivity of the resulting composite material was shown to change

with the reaction time thus enabling to obtain controlled conductivity composite material. The

synthesis method presented is based on the low solubility of Ag₂S and is potentially green, no

by-product producing as all Ag₂S nucleated outside the host material can be recycled into the

process via dissolving it in HNO₃.

*Corresponding author: <u>i.baltrusaitis@utwente.</u>nl, phone +31-53-489-3968

Keywords: silver sulfide; solar absorbed material; chemical bath deposition; XPS, SEM

1

Download English Version:

https://daneshyari.com/en/article/5359740

Download Persian Version:

https://daneshyari.com/article/5359740

Daneshyari.com