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ABSTRACT

In high-dimensional data, clusters of objects usually exist in subspaces; besides, different clusters prob-
ably have different shape volumes. Most existing methods for high-dimensional data clustering, however,
only consider the former factor. They ignore the latter factor by assuming the same shape volume value
for different clusters. In this paper we propose a new Gaussian mixture model (GMM) type algorithm for
discovering clusters with various shape volumes in subspaces. We extend the GMM clustering method to
calculate a local weight vector as well as a local variance within each cluster, and use the weight and var-
iance values to capture main properties that discriminate different clusters, including subsets of relevant
dimensions and shape volumes. This is achieved by introducing negative entropy of weight vectors, along
with adaptively-chosen coefficients, into the objective function of the extended GMM. Experimental
results on both synthetic and real datasets show that the proposed algorithm outperforms its competi-

tors, especially when applying to high-dimensional datasets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Clustering on high-dimensional data has encountered great
challenges. As we know, clustering analysis seeks to find groups
or clusters of similar objects based on a distance/similarity mea-
sure. However, for high dimensional datasets, such as in the appli-
cations of image processing, microarray analysis, and text
clustering, not all dimensions/features are important to discover
a cluster and many of the dimensions are often irrelevant (Parsons
et al., 2004). Further, due to the specificity of a cluster, different
clusters usually have different subsets of important dimensions.
All of these facts cause traditional distance/similarity measures
that use all dimensions with equal relevance become ineffective
(Domeniconi et al., 2007).

A few recently developed approaches referred to as subspace
clustering, have been put forward for high-dimensional data clus-
tering. In the approaches, clusters are found in subspaces rather
than in the entire data space. And different clusters are allowed
to exist in different subspaces. According to the ways that the sub-
spaces of clusters are determined, subspace clustering approaches
are further divided into two types, hard subspace clustering and
soft subspace clustering (Jing et al., 2007).

Hard subspace clustering methods (Agrawal et al., 1998, 1999,
2005; Cheng et al., 1999; Kailing et al.,, 2004; Parsons et al.,
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2004) use heuristic criterions to find subspaces of clusters. Gener-
ally, they search a few relevant dimensions within each cluster
according to some heuristic criterions. The subspace of a cluster
thus is the direct combination of the searched dimensions. Main
disadvantages of the methods include: certain key parameters in
the heuristic criterions are difficult for users to master and set;
moreover, clustering results are sensitive to changes in these
parameters (Jing et al., 2007; Parsons et al., 2004).

Soft subspace clustering methods (Domeniconi et al., 2004,
2007; Friedman and Meulman, 2004; Frigui and Nasraoui, 2004;
Jing et al., 2005, 2007) determine subspaces of clusters according
to the relevance of dimensions in discovering the corresponding
clusters. They associate to each cluster a local weight vector, with
each weight value capturing the contribution degree of a dimen-
sion in identifying the cluster. Large weight values are obtained
for relevant dimensions along which objects are tightly distributed.
Accordingly, the subspace of a cluster is the weighted combination
of dimensions by the corresponding weight vector. By using differ-
ent weight vectors for different clusters locally, a soft subspace
clustering gives a detailed description for a dataset.

In addition to subspace clustering, recently a few feature-selec-
tion oriented clustering methods are proposed for high-dimen-
sional data clustering, where a common global feature weight
vector is used to discriminate clusters. In (Tsai and Chiu, 2008), a
feature weight self-adjustment (FWSA) mechanism is proposed
to assign features with different weight values, according to their
ability in identifying the same clusters and distinguishing different
clusters.
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In (Law et al., 2004), a minimum message length (MML) crite-
rion is embedded into mixture-based clustering model, to simulta-
neously estimate the feature saliencies and the number of clusters.
Our recent study, however, shows that the MML clustering method
may become ineffective if some degree of overlap exists between
any two clusters. This is probably caused by the disability of the
MML criterion under certain circumstances.

In (Li et al., 2009), the concept of local feature saliency is devel-
oped. Unlike the previous two methods, the new one obtains dif-
ferent feature vectors for different clusters; thus is much more
like a subspace clustering method. The method also estimates
the number of clusters. However, the same result of wrong cluster
number being produced would occur when clusters overlap.

For most soft subspace clustering methods such as Domeniconi
et al. (2004, 2007) and Jing et al. (2005, 2007), properties of shape
volumes, however, are not considered or distinguished among clus-
ters, which usually causes the wrong assignments of boundary ob-
jects. Fig. 1 gives a simple example. Fig. 1a depicts the original two
clusters of objects elongated along the x and y dimensions. Fig. 1b
shows the transferred clusters, with the relative position of an ob-
ject to its cluster center transferred by the corresponding weight
vector. It can be seen that the weight vectors reflect the relevance
of dimensions and reshape each cluster as a spherical cloud
(Domeniconi et al., 2007). However, the transferred clusters are
different in their shape volumes. This causes a simple distance
measure, like Euclidean distance, is not capable of partitioning
the dataset well, especially partitioning those boundary objects.

The problem can be solved by applying Gaussian mixture mod-
els (GMMs). The main reason for the above problem is that some
simple models like K-means are used. In the models, there is no
parameter available for capturing the shape volume property of a
cluster. Hopefully in GMMs, each covariance matrix parameter de-
scribes the shape property of a cluster, which surely covers the
shape volume property. One can change the form of covariance
matrix of a cluster, to obtain a local weight vector as well as a local
variance, and use the second local variance parameter to capture
the shape volume property of the cluster. Fig. 1¢ shows the new
sample distribution after cluster transformation by both the local
weight vectors and the local variances of different clusters. It can
be seen that the transferred clusters are much more comparable
with each other in their shape volumes, which makes the partition
of the objects become much easier.

So in this paper, we propose a new GMM type soft subspace
clustering algorithm. By constructing a new form of covariance
matrix with a local weight vector and a local variance in each
Gaussian component of a GMM, we extend GMM clustering meth-
od and obtain the corresponding objective function. For estimating
parameters in the new model, we apply the scheme of introducing
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negative entropy of weight vectors into the objective function. In
addition, we use different coefficients when different negative en-
tropy items are added into the objective function, and an adaptive
way is presented to obtain these coefficients. We evaluate the effi-
ciency of the new mixture model type algorithm using synthetic
and real datasets, and compare its classification performance with
the performance of other mixture model type algorithms.

The remainder of this paper is organized as follows: Section 2
begins with an overview of GMMs; further the new special model
used in our algorithm is presented. In Section 3, we provide an
effective subspace clustering algorithm by introducing negative
entropy of weight vectors. In Section 4, the synthetic and real data
experimental evaluation of our model is conducted. The final sec-
tion summarizes the results of the paper.

2. Model formulation
2.1. Gaussian mixture models

As a fundamental model hypothesis, Gaussian mixture is typical
and well studied (Dasgupta, 1999). In the model, data objects are
thought of as originating from various sources or components,
and each source is modeled by a Gaussian distribution. Suppose
that we have a set of objects X ={xi, ..., x,} (x;€ R%) that were
drawn from a GMM comprised of K Gaussian components, the
probability density function (pdf) on point x; is given by

K
D(x;;0) = > txp(Xil€k, T, (1)

k=1

where ay is the mixing weight of component k, with Zle of =1and
0 < o < 1. ¢ is the mean of objects in component k, and X is the
covariance matrix. @, is defined as {(o, ¢k, Z¥)|1 <k<K}. ¢
(xi|ck, X) is the pdf of the kth Gaussian component, and can be fur-
ther expressed as
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Parameters of the model can be estimated by EM algorithm (Demp-
ster et al., 1977; McLachlan and Krishnan, 1997).

2.2. Subspace clustering model
For a high-dimensional data clustering task, we extend the

GMM by constructing a new special form of covariance matrix
for each component (or cluster) as
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Fig. 1. Illustration of the roles of local weight vectors and local variances in soft subspace clustering. (a) Clusters in original input space. (b) Clusters transformed by the local
weight vectors. (c) Clusters transformed by both the local weight vectors and the local variances.
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