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a b s t r a c t

This paper proposes robust refinement methods to improve the popular patch multi-view 3D reconstruc-
tion algorithm by Furukawa and Ponce (2008). Specifically, a new method is proposed to improve the
robustness by removing outliers based on a filtering approach. In addition, this work also proposes a
method to divide the 3D points in to several buckets for applying the sparse bundle adjustment algorithm
(SBA) individually, removing the outliers and finally merging them. The residuals are used to filter poten-
tial outliers to reduce the re-projection error used as the performance evaluation of refinement. In our
experiments, the original mean re-projection error is about 47.6. After applying the proposed methods,
the mean error is reduced to 2.13.
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1. Introduction

In computer vision, an interesting research topic, obtaining 3D
models of scenes from images, has been studied for a few decades.
Obtaining 3D models (or 3D reconstruction) from images is still a
difficult task (Brown and Burschka, 2003; Faugeras, 1992). Obtain-
ing 3D models from images can be separated into a few sub-prob-
lems, such as features matching (correspondence problems),
structure from motion, uncalibrated structure from motion, self-
calibration, dense stereo matching, and 3D reconstruction systems.
Tang et al. (2008c) showed a method to modify the Scale Invariant
Feature Transform (SIFT) descriptors for image matching. Cornelius
et al. (2004) proposed to use the bundle adjustment (BA) technique
(Lourakis and Argyros, 2008) to optimize the accuracy of 3D points
with uncalibrated images. Steinicke et al. (2006) implemented a
system to construct building models artificially in virtual reality
with multiple views. Aliaga et al. (2007) showed a method to re-
duce the estimation error of the camera parameters mathemati-
cally to construct high accuracy building model. Merrell et al.

(2007) proposed a method to use GPU to increase efficiency and
reduce noise. Furukawa and Ponce (2007a,b, 2008) used bundle
adjustment to reconstruct accurate object models automatically.
Mellor (2003) proposed a method to combine camera, GPS, inertial
sensors, and inclinometers to shoot a large number of photos to de-
tect high accuracy 3D points. And he calibrates by noise and map
texture to construct building models. Kamberov et al. (2006) also
showed a method to reconstruct 3D models by uncalibrated image
which are taken from random views.

However, the existence of spatial outliers remains a problem for
any 3D reconstruction method. Some researches work on the re-
moval of outliers in images; e.g., James and Dimitrijev (2010) pro-
posed a method to detect outliers in images which can combine
the template matching methods for image recognition. Hu and
Sung (2004) showed a method to evaluate the spatial outlier factor
by local trimmed mean. Shekhar et al. (2003) proposed a general
definition of S-outliers for spatial outliers and presented scalable
spatial outlier detection algorithms.

Given multiple images obtained from multi-camera capturing
systems, the methods for camera calibration and 3D reconstruction
from these images are highly interested for many researchers. This
work first follows the method proposed by Furukawa and Ponce
(2008). However, by applying the bundle adjustment directly to
optimize the 3D models, the outliers will greatly influence the opti-
mized results. To alleviate the above problem, a filtering approach
is adapted to filter out the outliers. First the 3D points are divided
into several buckets and the SBA (Lourakis and Argyros, 2008) are
applied to each bucket individually. The residual error is then
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used to filter potential outliers to reduce the overall re-projection
error.

The main contributions of this work are as follows. First, this
work proposes to employ hierarchical and local search with Zero
mean Normalized Cross-Correlation (ZNCC) value to refine the cor-
responding points. Second, this work proposes to divide a set of
points into buckets for outlier removal with the SBA.

The rest of this paper is structured as follows. Section 2 briefly
discusses the 3D reconstruction process and the method proposed
by Furukawa and Ponce (2008). Section 3 introduces the robust
estimate techniques by line fitting. Section 4 elaborates the pro-
posed refine method. Experiment results are shown in Section 6.
Section 7 concludes this paper and lists future research directions.

2. Camera calibration from multi-view stereo and bundle
adjustment

We now briefly discuss the reconstruction process over multi-
ple views and the method proposed by Furukawa and Ponce
(2008). We first consider the simplest case of two input images.
We consider the following geometry relationships: the epipolar
geometry between view pairs, represented by the fundamental
matrix (Faugeras, 1992; Hartley et al., 1992) and the trifocal geom-
etry between view triplets (Spetsakis and Aloimonos, 1990; Hart-
ley, 1995; Aliaga et al., 2007). The above geometry relationships
and the image correspondences can be computed automatically
from images as described below.

2.1. Geometry relationships

The simplest case is the geometry of two perspective views.
Both views can be acquired simultaneously as in a stereo setting.
Or the images can be acquired sequentially, e.g., by using a moving
camera. The above two situations are considered geometrically
equivalent. Let P and P0 be the camera matrices for each view
where the 0 indicates the second view. A point X in 3D space is pro-
jected as x = PX and x0 = P0X in the first and second view respec-
tively. The following three geometric relationships (Hartley and
Zisserman, 2004) stand:

(1) Correspondence geometry: What are the constraints of the
position of the correspondence point x0 in the second view,
given an image point x in the first view?

(2) Camera geometry: How to find the cameras matrix P and P0

for the two views, given a set of corresponding image points
fxi; x0ig; i ¼ 1; . . . ;n;?

(3) Scene geometry: What is the 3-D position of X, given corre-
sponding image points pair (x, x0) and cameras matrix P, P0?

The epipolar geometry of the two views can be used to compute
the image correspondences automatically. The details are referred
to Furukawa and Ponce (2008).

For two views, the basic algebraic entry is the fundamental ma-
trix. For three views, the trifocal tensor is employed. The trifocal
tensor is a 3 � 3 � 3 matrix that relates the coordinates of the cor-
responding points or lines in three views. Just as the fundamental
matrix is determined by the two camera matrices, the trifocal ten-
sor is determined by three camera matrices to summarize the rel-
ative projective geometry of three cameras.

The tensor-based methods can be extended to a quadrifocal
tensor in four views. However, the computation a quadrifocal ten-
sor using a non-iterative method is possible but oftentimes stag-
gering and the reconstruction from more than four views is even
more difficult. Fig. 1 shows the recovered point structure and sur-
rounding camera views.

Many methods have been considered for reconstruction from
more than four views and one of the most accepted methods was
proposed by Furukawa and Ponce (2008).

2.2. 3D points refinement

This section discusses the method proposed by Furukawa and
Ponce (2008) and the implementation processes.

2.2.1. Initializing and sub-sampling
To get more accurate 3D model, multiple images around the 3D

object to be reconstructed are captured. The expected re-projection
error for refining 3D model is defined. The distance between fea-
ture points and epipolar line is shown in Fig. 2. And the expected
re-projection error Er is defined as ð

PN
i d2

i þ d02i Þ=N, where N is
the number of corresponding points, and d is the distance between
the feature points and the epipolar lines (Furukawa and Ponce,
2008). To obtain more reliable corresponding points, image pyra-
mids are built for all input images, as shown in Fig. 3. And then
the level L ¼ dlog2Ere of the pyramids is employed to run the PMVS
(Furukawa and Ponce, 2007b). After the process, all the 3D points
and a set of images in which the points is visible are obtained.
Fig. 4 shows the relationship among the 3D points, image projec-
tion points, and a set of visible images V.

The above information is employed to construct the 3D points’
projection in images, and sub-sample the points (Fig. 5). The image
is divided into 10 � 10 blocks, and at most e features in each block
are randomly selected. Finally, the number of the points after sub-
sampling is about 10–20% of the original points. The remaining
points are employed to refine the correspondence points. Sub

Fig. 1. Dinosaur: 3D point structure and camera positions for the Dinosaur
sequence. (Image source: Furukawa and Ponce (2008).)
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Fig. 2. The re-projection error is the distance between feature points and the
epipolar line.
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