

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Low-temperature deposition of α -Al₂O₃ films by laser chemical vapor deposition using a diode laser

Yu You, Akihiko Ito*, Rong Tu, Takashi Goto

Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 18 August 2009 Received in revised form 15 January 2010 Accepted 15 January 2010 Available online 25 January 2010

Keywords: Laser CVD α -Al₂O₃ Low-temperature deposition We prepared AI_2O_3 films by laser chemical vapor deposition (LCVD) using a diode laser and aluminum acetylacetonate ($AI(acac)_3$) precursors and investigated the effects of laser power (P_L), deposition temperature (T_{dep}), and total pressure (P_{tot}) in a reaction chamber on the crystal phase, microstructure, and deposition rate (R_{dep}). An amorphous phase was obtained at $P_L = 50$ W, whereas an α -phase was obtained at $P_L = 150$ and 200 W (1 0 4)- and (0 1 2)-oriented α - AI_2O_3 films were obtained, respectively. The R_{dep} of α - AI_2O_3 films increases with decreasing P_L and P_{tot} . Single-phase α - AI_2O_3 film was obtained at $T_{dep} = 928$ K, which is about 350 K lower than that obtained by conventional thermal CVD using $AI(acac)_3$ precursor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Alumina crystallizes in many polymorphs such as α -, γ -, θ -, and κ -Al₂O₃. Metastable polymorphs, such as γ , θ and κ transform to α -Al₂O₃ at temperatures above 1273 K. Thus, the stable α -Al₂O₃ films are preferred when used as a top layer on Ti(C, N) coated cemented carbide cutting tools intended to be used in high-speed cutting [1–3].

To date, Al₂O₃ films have been prepared by various processes, such as physical vapor deposition (PVD) [4], chemical vapor deposition (CVD) [1–3,5], and the sol–gel method [6]. CVD using AlCl₃–CO₂–H₂ as a precursor has been a common commercial method for the preparation of α -Al₂O₃ films [7]. However, by-products such as HCl may corrode the deposition chamber; moreover, a high deposition temperature, usually ranging from 1200 to 1300 K, may degrade the mechanical properties of the substrates.

Moderate-temperature deposition has been used for Ti(C, N)/ Al₂O₃ multilayer coatings [8]; however, κ -Al₂O₃ was easily codeposited and transformed to α -Al₂O₃ during the cutting process, leading to cracking of the films due to volume contraction encountered in the κ to α transformation [9]. Therefore, it is of importance to develop new low-temperature processes for deposition of α -Al₂O₃ films.

Extensive work has been devoted to reduce the deposition temperature of CVD Al₂O₃ films using metal–organic precursors

E-mail address: itonium@imr.tohoku.ac.jp (A. Ito).

(MOCVD) and plasma enhancement (PECVD) [10–13]. Although MOCVD has an advantage in the preparation of crystalline Al_2O_3 films at low-temperature, it tends to deliver the γ and κ phases. These metastable phases transform into the α phase at high temperature, causing the abrasion of Al_2O_3 films [13]. Furthermore, the co-deposition of an amorphous phase was often reported at low-temperature. However, no report has yet appeared addressing the low-temperature deposition of α - Al_2O_3 in a single-phase by MOCVD. Although PECVD has efficiently decreased the deposition temperature of α - Al_2O_3 [10], reduced pressure and low precursor concentration (to maintain plasma formation) leads to low deposition rates for the films [14,15].

Lasers have been applied to CVD mainly to enhance the reactivity of precursors by an incident laser beam parallel or vertical to the substrate surface [16,17]. Photon-controlled chemical reactions of precursors in laser CVD (LCVD) would lead to low-temperature deposition. We have employed a high-power (~250 W at most) continuous-wave Nd:YAG laser to heat substrates and simultaneously activate precursors emitted onto a wide-area substrate (~15 mm × 15 mm) and have prepared ZrO₂ and TiO₂ films at low-temperature with high deposition rates [18,19]. We have also prepared single-phase α -Al₂O₃ films at moderate-temperature of 1100 K and high deposition rate of 250 μ m h⁻¹ by LCVD using an Nd:YAG laser [20]. Since a diode laser has higher photon energy than an Nd:YAG laser, a lower deposition temperature would be expected by using a diode laser in conjunction with CVD.

In the present study, we demonstrate low-temperature deposition of α -Al₂O₃ films by LCVD with a diode laser and investigate the effects of deposition conditions on the crystal phase, microstructure, and deposition rate of α -Al₂O₃ films.

^{*} Corresponding author at: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

^{0169-4332/\$ –} see front matter $\ensuremath{\textcircled{o}}$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.apsusc.2010.01.048

Fig. 1. Schematic of the LCVD apparatus.

2. Experimental

A vertical, cold-wall type CVD apparatus was constructed to prepare Al₂O₃ films. Fig. 1 shows a schematic of the LCVD apparatus. AlN plates ($10 \text{ mm} \times 10 \text{ mm} \times 1 \text{ mm}$) were used as substrates. These were preheated on a heating stage using an electrical heater with a preheating temperature (T_{pre}) ranging from 293 to 873 K, after which the entire substrate was irradiated by an InGaAlAs diode laser (wavelength: 808 nm). The laser beam was introduced into the chamber through a quartz-glass window and was slightly expanded by a lens to about 20 mm in diameter at the substrate surface. The laser was operated in continuous mode with power $P_{\rm L}$ ranging from 50 to 200 W. A thermocouple (TC) was inserted into a slot in the substrate to measure the deposition temperature (T_{dep}) . $Al(acac)_3$ (99%) precursor was evaporated by heating, its vapor being transported into the chamber using Ar gas (99.99%). The $Al(acac)_3$ precursor vaporization temperature (T_{Al}) was varied from 443 to 503 K. O2 gas (99.9995%) was introduced into the chamber separately through a double-tube nozzle to react with Al(acac)₃. The Ar and O₂ gas flow rates were set at 8.25×10^{-7} and $1.65 \times 10^{-6} \text{ m}^3 \text{ s}^{-1}$, respectively. The total pressure (P_{tot}) in the CVD chamber was controlled between 0.2 and 1.6 kPa. The feed pipes and the nozzle were heated at 523 K to prevent condensation of the precursor vapor. Table 1 summarizes the deposition parameters for preparing Al₂O₃ films.

The crystal phases were examined by X-ray diffraction (θ –2 θ scan) with Cu K α radiation (XRD; Rigaku, RAD-2C). The morphology and thickness were characterized using a scanning electron microscope (SEM; Hitachi, S-3100H) and the deposition rate (R_{dep}) was calculated from the thickness and deposition time.

Table 1 Deposition conditions of Al_2O_3 films by LCVD.	
I D	50 20014/

Laser power, P _L	50–200 W
Substrate preheating temperature, $T_{\rm pre}$	293-873 K
Total pressure in chamber, P _{tot}	0.2–1.6 kPa
Al(acac) ₃ precursor temperature, T_{Al}	443–503 K
Gas line and nozzle temperature	523 K
Flow rate of Al(acac) ₃ carrier gas (Ar)	$8.25\times 10^{-7}m^3s^{-1}$
Flow rate of O ₂ gas	$1.65\times 10^{-6}m^3s^{-1}$
Distance between nozzle and substrate	25 mm

Fig. 2. Deposition temperature of Al_2O_3 films as a function of T_{pre} and P_L at P_{tot} = 0.2 kPa and T_{Al} = 443 K.

3. Results and discussion

3.1. The phase composition of Al₂O₃

The T_{dep} was determined primarily by a combination of P_L and T_{pre} . Fig. 2 shows the relationship between T_{dep} and P_L for different values of T_{pre} at T_{AI} = 443 K and P_{tot} = 0.2 kPa. The T_{dep} increases with increasing P_L and T_{pre} .

Fig. 3 shows XRD patterns of Al₂O₃ films prepared at T_{Al} = 443 K, P_{tot} = 0.2 kPa, and P_L = 50–200 W. No peaks except that of the substrate were identified at P_L = 50 W (Fig. 3(a)). At P_L = 100 W and T_{dep} = 825 K, the XRD peaks were indexed as α - and γ -Al₂O₃ (Fig. 3(b)). Single-phase α -Al₂O₃ film was obtained at P_L = 120 W and T_{dep} = 928 K (Fig. 3(c)). The peaks of α -Al₂O₃ film became stronger and showed a (1 0 4) orientation at P_L = 150 W (Fig. 3(d)). At P_L = 200 W (0 1 2)-oriented α -Al₂O₃ film was significantly obtained (Fig. 3(e)).

Fig. 3. XRD patterns of Al₂O₃ films prepared at $T_{pre} = 293$ K, $T_{Al} = 443$ K, and $P_{tot} = 0.2$ kPa: (a) $P_L = 50$ W and $T_{dep} = 623$ K, (b) $P_L = 100$ W and $T_{dep} = 825$ K, (c) $P_L = 120$ W and $T_{dep} = 928$ K, (d) $P_L = 150$ W and $T_{dep} = 973$ K, and (e) $P_L = 200$ W and $T_{dep} = 1077$ K.

Download English Version:

https://daneshyari.com/en/article/5360521

Download Persian Version:

https://daneshyari.com/article/5360521

Daneshyari.com