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A system for mapping between different sensory modalities was developed for a robot system to enable it
to generate motions expressing auditory signals and sounds generated by object movement. A recurrent
neural network model with parametric bias, which has good generalization ability, is used as a learning
model. Since the correspondences between auditory signals and visual signals are too numerous to mem-
orize, the ability to generalize is indispensable. This system was implemented in the “Keepon” robot, and
the robot was shown horizontal reciprocating or rotating motions with the sound of friction and falling or
overturning motion with the sound of collision by manipulating a box object. Keepon behaved appropri-
ately not only from learned events but also from unknown events and generated various sounds in accor-
dance with observed motions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Various kinds of robot systems that interact with humans have
recently received a great deal of attention, represented by in-
creased interest in humanoid robots (http://www.honda.co.jp/ASI-
MO/; Ishiguro et al., 2001), particularly human assistance robots.
These robots have to react to multi-modal sensory inputs in order
to execute tasks and communicate with human operators. Most
humanoid robots developed so far handle the sensory data from
different modes independently. After information processing for
each modality, the results are synchronized and integrated, a pro-
cess that is quite difficult to design. An alternative approach is for
the robot to handle all the data simultaneously, which is the ap-
proach we have taken.

People deal with “cross-modal information” by, for example,
expressing auditory information (e.g. sounds of collision) by using
visual expressions like gestures (e.g., moving the hand quickly and
stopping it sharply). These gestures are apparently related to the
development of onomatopoeia (Werner and Kaplan, 1963). We call
this process “inter-modality mapping.”

Arsenio and Fitzpatrick proposed an interesting method for ob-
ject recognition using “periodic dynamics” in multi-modal infor-
mation (Arsenio and Fitzpatrick, 2003). Using this method, a
humanoid robot called Cog recognizes objects by coupling data
from different modes. For example, a hammer is recognized from
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its visual image, ringing sound, and hitting motion. The crucial con-
cept of this method regards recognition as the extraction of com-
mon dynamics from multi-modal sensory information. However,
the targets are restricted to rhythmic patterns.

Our ultimate goal is to design and implement a method for in-
ter-modal mapping. The method should enable a robot to generate
motion from various types of sound signals and to generate sound
appropriate to various types of images. Such a method should lead
to various interesting findings in the field of cognitive sciences.

Section 2 presents our model of inter-modality mapping—a ro-
bot acquires the relationships between different items of modal
information by observing various events. Section 3 introduces the
neural network model used for association/translation between in-
ter-modalities and for the generalization of multi-modal sensory
dynamics obtained from observation experience. Section 4 de-
scribes the implementation of our system in a small robot called
Keepon. Section 5 presents the experimental results for inter-
modality mapping, and Section 6 discusses the generalization abil-
ity of our method on the basis of the results of experiments using
environmental sound. Section 7 summarizes the key points and
mentions future work.

2. Model of inter-modality mapping

As mentioned above, conventional robot systems typically pro-
cess sensor modalities separately. However, various modes of sen-
sory information are usually received simultaneously. We have
developed a procedure for interpretation of inter-modality map-
ping that is divided into two main phases, a “learning phase” and
a subsequent “interaction phase.”
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2.1. Learning phase (“looking at sound source”)

In the learning phase, the robot observes an event that can have
various kinds of sound, such as a bouncing sound, a friction-in-
duced sound, a continuous sound, or a rhythmic sound (see
Fig. 1). The robot memorizes these sounds along with the motions
of the sound source. We call this the “robot looking at sound
source” phase.

2.2. Interactive phase (“mapping from sound to motion”)

In the interactive phase, the sensory information from a single
modality (image or sound) is input into the robot’s system. The ro-
bot associates this information with the information from the
other modalities and expresses it by, for example, moving its body
to create the same motion as the sound source (Fig. 2). Conversely,
the robot observes a motion and outputs the sound memorized for
that motion (Fig. 3).

3. Recurrent neural network model
3.1. Introduction

There are numerous sounds in the environment around us. It is
impossible to construct a database that can systematically store all
environmental sounds. Therefore, to achieve inter-modal mapping,
the robot must be able to generalize various sounds from a limited
collection of memorized sounds. That is, the robot should be able
to adapt to unknown stimuli.

To meet this requirement, we use the artificial neural network
model proposed by Tani and Ito (2003). The main characteristic
of this recurrent neural network model with parametric bias
(RNNPB model) is that chunks of sequence patterns of the sen-
sory-motor flow can be represented by a vector of small dimen-
sion. This vector plays the same role as bifurcation parameters in
nonlinear dynamic systems. That is, different vector values result
in different dynamic patterns being generated by the system. The
main advantage of using parameter bifurcation is that ideally the
RNNPB model can encode an infinite number of dynamic patterns
with modulated analog values of the vector.

Bouncing
sound

Robot Keepon

Fig. 1. Learning phase: robot looking at sound source.

Bouncing
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An RNNPB model is usually designed as a predictor (“forward-
ing-forward model”) for which input is current condition S(t) and
output is next condition S(t + 1). Its network has the same struc-
ture as the Jordan-type RNN (Jordan, 1986) except that it has para-
metric bias (PB) nodes in the input layer (see Fig. 4). Unlike other
input nodes, these PB nodes have a constant value throughout each
time sequence. The context layer has a loop that inputs the current
output as input data into the next step. This enables the RNNPB
model to learn the time sequences on the basis of past contexts.

The RNNPB model has three activation modes: learning, recog-
nition, and generation based on prediction. Learning is a process
that modulates the network weights and PB values by using output
error. Recognition is a process that inputs the whole sequence to
output the PB representing the sequence. Prediction is a process
that inputs a certain state of a given sequence to output the next
state.

3.2. Learning mode

In the learning mode, it updates its weights and the value for
the “parametric bias’ simultaneously using the back-propagation
through time (BPTT) method (Rumelhart et al., 1986) with predic-
tion error. Each update is carried out using the equations below.
The step length of a sequence is denoted by L. For each sensory-mo-
tor output, back-propagated errors with respect to PB nodes are
accumulated and used to update the PB values. The update equa-
tions for the ith unit of the parametric bias at the t in sequence are

t+l/2
op; = kep - Z 5?13 + Kap (D1 = 2P0+ o), (1)
12
Pey1 = P+ E-0p;, (2)
b= Singid(pc/C)~ 3)

In Eq. (1), the ép, for updating the internal values p; of the PB
(pe) is obtained from the summation of two terms. The first term
represents the delta error, 6, back-propagated from the output
nodes to the PB nodes: it is integrated over the period from the
t —I/2 to the t + /2 steps. Integrating the delta error prevents local
fluctuations in the output errors from significantly affecting the
temporal PB values. The second term is a low-pass filter that inhib-
its frequent rapid changes in the PB values. Internal value p; is up-
dated using the 6p;, as shown in Eq. (2). The ky, (>0), ky, (<0), and &
(>0) are coefficients. The current PB values are obtained from the
sigmoidal outputs of the internal values. After learning the time se-
quences, the RNNPB model self-organizes the PB values at which
the specific properties of each individual time sequence are en-
coded and can generate a sequence from the corresponding PB val-
ues. Our goal is to identify the specific parameter values
corresponding to each event. Therefore, to fix the parameter values
during the motion recognition, parameter ky, in Eq. (1) was set to 0
in our RNNPB model training:

Fig. 2. Interactive phase: mapping from sound to motion.
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