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In many classification problems objects should be rejected when the confidence in their classification is
too low. An example is a face recognition problem where the faces of a selected group of people have to
be classified, but where all other faces and non-faces should be rejected. These problems are typically
solved by estimating the class densities and assigning an object to the class with the highest posterior
probability. The total probability density is thresholded to detect the outliers. Unfortunately, this proce-
dure does not easily allow for class-dependent thresholds, or for class models that are not based on
probability densities but on distances. In this paper we propose a new heuristic to combine any type
of one-class models for solving the multi-class classification problem with outlier rejection. It normalizes
the average model output per class, instead of the more common non-linear transformation of the
distances. It creates the possibility to adjust the rejection threshold per class, and also to combine class
models that are not (all) based on probability densities and to add class models without affecting the
boundaries of existing models. Experiments show that for several classification problems using class-spe-
cific models significantly improves the performance.
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1. Introduction

In standard problems one has to classify an object and assign it
to one of a set of known classes. In practice one also has to reject
the objects that do not fit to any of the classes (Dubuisson et al.,
1985). In these applications some classes may be known, but novel
classes can appear and these are unknown. In a face recognition
problem a model for each person in the training set has to be
trained. The system should recognize a novel person and it should
not assign this outlier person to one of the known persons. Further-
more, an extra practical demand is that the system should be easily
extendible to include new persons, and it should be simple to re-
move known persons. Moreover, such an extension should not af-
fect the decision boundaries between existing models. These types
of demands are not only typical for face recognition (Kang and
Choi, 2006), but also for the classification of crops, industrial prod-
ucts, disease detection in medical imaging etc.

The standard approach to rejection in pattern recognition is to
estimate the class conditional probabilities, and to reject the most
unreliable objects, that is, the objects that have the lowest class
posterior probabilities. This is called the ambiguity reject (Chows
rule, Chow, 1970). This reject rule is optimal when the posterior
probabilities are estimated without error. In the case of estimation
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errors, it was recognized in Fumera et al., 2000 that a per-class
threshold may be required.

Furthermore, using the class posterior probability for rejection
ignores the possibility of having objects from unknown classes.
These objects do not typically appear in areas with a low posterior
probability (i.e. in areas between the known classes), but they are
often distributed around the known classes, where the total data
probability density is low, but the posteriors are high. In Dubuisson
and Masson, 1993 the ambiguity reject was extended to the dis-
tance reject in which objects are rejected for which the full data
density is below a threshold. This can be seen as outlier detection,
or novelty detection, and numerous other outlier detection algo-
rithms in a wide range of scientific fields have been proposed (Da-
vies and Gather, 1993; Japkowicz et al., 1995; Tarassenko et al.,
1995; Cerioli and Riani, 1999; Baker et al., 1999; Pan et al., 2000;
Ramaswamy et al., 2000; Tax and Duin, 2001; Marsland, 2001).

It appears that some of these outlier detection methods do not
rely on a probability density estimate. To estimate a probability
density requires a large amount of training data, and when the fea-
ture space is large in comparison to the training set size, density
estimators suffer from the curse of dimensionality (Duda et al.,
2001). It is therefore often better to avoid an explicit density esti-
mation and to use an approximate model. Unfortunately, this
makes the combination of the models to a multi-class classifier
more complex, in particular when one wants to do more than sim-
ple voting. Confusion often occurs in situations where objects are
accepted by more than one model. Unfortunately, in many cases
it is just two models, and in this situation voting is not applicable.
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For these situations the soft outputs of the models have to be com-
pared. But because each model may have a different way to mea-
sure the similarity of an object to its class, the output values of
the different class models have to be normalized.

In this paper we investigate and compare two rescaling heuris-
tics for one-class models. Both heuristics are constructed such that
the decision boundaries between the classes and the outliers are
not affected. The first scaling makes use of the assumption that
all class models give a fixed output for outlier objects, and for that
it requires a non-linear scaling of distances. The second scaling as-
sumes that the average output for a class is constant, and assumes
that classes are relatively well sampled. In Section 2 we start with
discussing the standard approach of rejecting objects. Next, the
combination of models and the required normalization are pre-
sented in Section 3. In Section 4 the experimental evaluation is
done and the paper finishes with conclusions in Section 5.

2. Multi-class classifiers with reject and class models

Assume we are given objects x from c classes wy, ..., o, with
prior probabilities p(w;). All objects are represented by p-dimen-
sional feature vectors in a bounded area in the feature space:
X € 2 C RP. A training set 21" = {x;,j = 1,..,n;} is available for each
of the classes w;. The standard pattern recognition approach to
classification is to estimate the class conditional probabilities
p(x|w;), i=1,...,c. By applying Bayes rule the posterior probabilities
p(wi|x) can be computed using the class conditional probabilities
and the class priors:

o pe)p@)
p(wl‘x) - Zf:lp(x‘wj)p(a)j) p(x)

In the standard rejection approach, the ambiguity reject (Chow,
1970), the objects x are rejected for which the maximum posterior
probability max; p(w;|x) is below a threshold.

In real applications objects from other, novel classes may ap-
pear. This situation can be modeled by an extra reject (or outlier)
class wg that has a uniform distribution in the area . To distin-
guish this outlier class from the ¢ known classes, one can put a
threshold on the total data density of the known classes (Bishop,
2006). The total classifier with reject therefore becomes:

o {(Do p(x) <0,

oi - p(wilX) > p(wj|X),

_ p(X|(0i)p(a),-) (1)

i#j and p(x) > 0. @)
This approach is suitable when a sufficiently large training sample
is available for all of the classes and when the training sample is
not contaminated by outliers. In this case p(x|w;) can be estimated
reliably by some model p(x|w;). A first problem may be that the dif-
ferent classes in the training data may be contaminated by different
amounts of outliers. In that case a different rejection threshold 0;
per class (Fumera et al., 2000) has to be used. In this case a den-
sity-based one-class model for class w; is obtained:

y={
i

Even when we know the class priors and we are using proper den-
sity models (as in (3)), we cannot just use the standard Bayes rule
(Eq. (1)) for finding the most probably class. The Bayes rule does
not incorporate the model thresholds 6;, and these thresholds may
vary significantly in value, especially when classes have a large
spread. For classes with a large spread, the probability density val-
ues tend to be low, because the probability densities are normalized
to integrate to one. On the other hand, classes that are very compact
will have a much higher probability densities. When a single rejec-
tion threshold is chosen in the standard Bayes rule, most of the re-
jected objects will therefore come from the class with the highest

P(X|wi) < 6;
otherwise.

3)

spread, while (almost) none of the objects from a very compact
class is rejected.

A second problem is that to apply Bayes rule (1) a good estimate
of the class priors p(w;) should be available. When the training set
reflects well what can be expected in the practical application,
these priors can be simply obtained. For situations that new classes
may appear, for instance because new types of diseases or new
types of defects may appear in the objects that should be classified,
it may be hard to find these priors.

A third significant problem for formulation (2) is that density
estimation is a hard problem. For high dimensional feature spaces
many training objects are required to avoid the curse of dimen-
sionality (Duda et al., 2001). When a limited training set is avail-
able, approximations to the class densities have to be made, like
k-means clustering centers, self-organizing maps, subspace models
using PCA or hypersphere models inspired by the support vector
machines (Tax, 2001). These methods often use a distance to pro-
totypes or subspaces, and are therefore called distance-based class
models. In contrast to the density models, the distance-based class
models give a high output to the outliers:

N {(U() di(x) > H,'
y =
i

otherwise,
where dj(x) is the distance of object x to the model of class w;.

Although these distance-based class models (4) may describe a
class better, they lack a common output scaling and it is not clear
how they can be compared and combined. A similar problem ap-
pears when density-based models and distance-based models are
combined, because one cannot directly compare (3) with (4); the
first one increases while the second one decreases when one ap-
proaches a class.

To generalize formulation (2) to both density and distance-
based class models, a normalization has to be defined. We define
this normalization with two demands. The first demand is that
the normalized output for a class is high for objects that come from
that class. The second demand is that the decision boundaries of
the different models between the outlier objects and their corre-
sponding class objects are not changed.

Because each model characterizes the same outlier class with
their threshold 0;, these thresholds should coincide. On the other
hand, each model characterizes a different ‘target’ class, and there-
fore these class outputs have to be compared to find the most
probable output class. The exact construction of the normalization
is explained in the next section.

“)

3. Combination of class models

We propose to use the following transformation for the normal-
ization the outputs of models (3) and (4). For the density-based
models we chose to use a simple linear rescaling, for the dis-
tance-based models we have a possibly nonlinear transformation
g
5 () = {ii’(?ﬂwi) + Po

28(di(x)) +do

density-based models,

)

distance-based models,

with the two free parameters Z,, po for the density models, and g, Zy,
dy for the distance models.

To remove the first free parameter, we use the assumption that
all one-class models are assumed to model the same outlier distri-
bution with their threshold 6;. The rejection thresholds 6; in (3) and
(4) should therefore coincide for all classes. This removes one of
the free parameters.

To fix the second free parameter two alternatives are possible;
the first is based on the expected output for the outlier class data,
the second is based on the expected output for the target class:
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