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a b s t r a c t 

A method is proposed seeking thresholds for segmentation of grayscale images. The normalized image 

histogram is modeled as a Gaussian mixture, and the parameters associated with the Gaussian compo- 

nents are estimated iteratively with a set of learning automata. To reduce the parameter search space, 

the number of major components in the image and their associated parameter ranges are first specified 

using some desired properties of the Gaussian distribution. Thresholds are chosen based on the Gaussian 

parameter estimates after convergence. Illustrative examples are provided to demonstrate the learning 

process and the effectiveness of the proposed segmentation scheme. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Image segmentation is a fundamental and ubiquitous task in 

higher-level image analysis and processing applications such as ob- 

ject detection and classification and image retrieval. The quality of 

segmentation has a direct impact on the effectiveness and validity 

of these higher-level tasks. The objective of image segmentation 

is to partition an image into meaningful regions corresponding to 

objects of interest. Thresholding is an effective and commonly used 

segmentation method due to its simplicity. It is based on the as- 

sumption that different objects can be distinguished solely based 

on the image histogram. When more than one object with distinc- 

tive features exists in the image, thresholds are sought for an ap- 

propriate segmentation of each object out of the background. 

A wide variety of threshold selection techniques for image 

segmentation exist in the literature. Conventional methods pick a 

threshold that minimizes the overlap or maximizes the variance 

between two adjacent histogram clusters based on certain statis- 

tical metrics [11,19] . More advanced techniques employ intelligent 

concepts for segmentation such as the support vector machine 

[7] , particle swarm optimization [28] , and information entropy 

[18,21,24] . An alternative threshold selection technique views 

the image histogram as a probability distribution function (PDF) 

and models it as a finite mixture of probability distributions [6] . 

Among various distribution mixture models, the Gaussian mixture 

model (GMM) has been well studied and widely used, due to its 
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simple representation with each univariate Gaussian distribution 

requiring only two parameters (the mean and the standard devia- 

tion) and its desirable characteristics, such as symmetry, isotropy, 

and unimodality [12,35] . 

In the context of a GMM, threshold selection becomes a three- 

step process: (i) detect the number of Gaussian components from 

the normalized histogram of an image; (ii) estimate the Gaussian 

distribution parameters (mean, standard deviation, and weight) by 

fitting the mixture to best approximate the normalized histogram, 

an optimization problem; and (iii) calculate thresholds based on 

the estimated Gaussian parameters. Schemes to estimate the num- 

ber of Gaussian components and their associated parameters, ei- 

ther iterative or non-iterative, have been proposed for multi-level 

thresholding [3,4,6,27] . Since the tails of the Gaussian components 

in the mixture model are in general overlapping, estimates from 

non-iterative schemes without refinement are inadequate [4] . Be- 

cause of the large parameter search space (especially for higher- 

dimensional cases), estimation of Gaussian parameters usually em- 

ploys gradient-based numerical search methods [20] . However, 

these methods can easily be trapped at local extrema in the op- 

timization space, and reply heavily on the accuracy of the initial 

estimate [12] . Alternative iterative estimation methods such as the 

Expectation-Maximization (EM) algorithms [34] suffer from addi- 

tional problems in practical implementation, e.g., slow convergence 

and sensitivity to initial conditions [31] . 

In this paper, we employ a learning-based optimization ap- 

proach utilizing learning automata [29] for estimating Gaussian 

mixture parameters. Different learning automaton algorithms are 

distinguished by the ways their PDFs are updated. They find 

applications in signal processing [14] , feedback control systems 

[13,33] , power systems [30] , and image processing [2,8,22,25] . The 
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randomness in the generation of parameter estimates provides 

learning automaton algorithms with obvious advantages over the 

gradient-based and EM algorithms. To be specific, convergence 

properties are independent of initial conditions, global extrema can 

be achieved over the learning process [1] , and the speed of conver- 

gence is faster [29] , especially with an increasing number of pa- 

rameters to be estimated. 

We approach the Gaussian parameter estimation problem with 

the so-called continuous action reinforcement learning automata 

(CARLA) [14] algorithm, in the same vein as in [8] . In particular, the 

output of each automaton corresponds to one specific Gaussian pa- 

rameter to be estimated. Their combination at each stage provides 

a fitted Gaussian mixture model of the original image histogram. 

The match between the two is evaluated based on some metric, 

e.g., the average mean square error, and is returned as a reinforce- 

ment signal, to be applied as the input to each automaton. Inside 

a learning automaton, a probability distribution function (PDF) is 

defined over the parameter search range, representing the desir- 

ability of each specific value, and is updated as learning proceeds 

based on the reinforcement signal. A parameter estimate (an au- 

tomaton output) is randomly generated for the next stage based on 

the current probability distribution. However, different from [8,14] , 

we employ some desired properties of the Gaussian distribution 

to pre-process an image histogram to detect the number of major 

components and shrink parameter search ranges associated with 

each component. This significantly expedites convergence of the it- 

erative estimation process. 

The rest of the paper is organized as follows. Section 2 provides 

a detailed description of the learning-based thresholding method. 

Illustrative examples are given in Section 3 for the segmentation 

of a remotely sensed image to illustrate the effectiveness of the 

proposed method. Conclusions and some future work are given at 

the end of the paper. 

2. A learning-based thresholding method 

In this section, we consider the multi-level thresholding prob- 

lem for an image that has a normalized histogram modeled as 

a mixture of Gaussians, the so-called Gaussian mixture model 

(GMM). Each Gaussian component in this case is assumed to cor- 

respond to an object (or a group of objects with similar pixel 

grayscale level distributions) of interest. Two key issues are to be 

addressed: (1) the number of components in the GMM needs to be 

determined; and (2) parameter estimates of each Gaussian com- 

ponent are required for threshold computations. When individual 

Gaussian components are well separated from each other, peaks 

and valleys in the GMM may be used to detect the presence of 

Gaussian components. This method is not valid, however, when a 

relatively smaller component is close to but not dominated by a 

larger one. We adopt the method used in [4] : a Gaussian compo- 

nent is detected with a pair of zero crossings in the second order 

difference of the GMM. In an ideal Gaussian density distribution 

with a mean μ and a standard deviation σ , this pair of zero cross- 

ings occur at the inflection points of the Gaussian, i.e., μ ± σ . The 

pair does not disappear even when two components are close to 

each other. 

Since the tails of the Gaussian components overlap with each 

other to a large extent in general, the locations of zero crossings 

cannot be used to precisely extract the individual component. We 

adopt an iterative learning procedure, in which locations of the 

zero crossings are used to initialize the search range for a given 

parameter, and a learning automaton [1] is employed to progres- 

sively refine the estimate. 

The Gaussian component detection and localization procedure 

outlined above is essentially a two-step process, as shown in Fig. 1 . 

Detailed descriptions of each major step are provided next. 

Fig. 1. Gaussian component detection and parameter estimation with learning au- 

tomata. 

2.1. Gaussian component detection 

The histogram of an image provides statistical information on 

its pixels with different grayscale levels. It is first normalized to be 

viewed as a probability density function h ( x ), x ∈ [0 , L − 1] , where L 

is the number of different grayscale levels used in the image rep- 

resentation. The normalized histogram h ( x ) is then modeled as a 

Gaussian mixture G ( x ). To avoid over-segmentation, the histogram 

for a real image is first smoothed by a Gausssian kernel with a 

chosen standard deviation τ

G τ (x ) = 

1 √ 

2 πτ
exp 

[
− x 2 

2 τ 2 

]
(1) 

to obtain a smoothed normalized histogram h τ ( x ) with 

h τ (x ) = G τ (x ) ∗ h (x ) (2) 

where “∗” denotes the convolution operation. 

Zero crossings of the second order derivative approximation sig- 

nal for h τ ( x ) [9] can then be detected. Note that the zero crossings 

should appear in pairs with the sign of the second order differ- 

ence of h τ ( x ) changing from positive to negative at the left cross- 

ing point, and from negative to positive at the right crossing point. 

These inflection points occur at μ ± σ for an ideal Gaussian G ( μ, 

σ ), and provide initial estimates of its mean and standard devia- 

tion. 

Each pair of inflection points determine the presence of a Gaus- 

sian component. Suppose there are K pairs of inflection points 

detected from h τ ( x ). The Gaussian mixture model of h τ ( x ) is ex- 

pressed as 

G (x ) = 

K ∑ 

i =1 

p i √ 

2 πσi 

exp 

[
− (x − μi ) 

2 

2 σ 2 
i 

]
(3) 

where μi , σ i , and p i are the mean, the standard deviation, and the 

weight of the i th component in the mixture, respectively. Noting 

that 

K ∑ 

i =1 

p i = 1 (4) 

we have in total 3 K − 1 independent parameters to be estimated 

by the learning procedure. 

Initialization of learning process . The PDF for the estimation 

of a Gaussian parameter is usually initialized to be a uniform 
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