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a b s t r a c t 

The expectation of higher accuracy in recognition systems brings the problem of higher complexity. In 

this paper we introduce a novel Incremental Similarity (IS) that maintains high accuracy while preserving 

low complexity. We apply IS to on-line and incremental learning tasks, where the need of low complexity 

is of significant need. Using IS enables the system to directly compute with the samples themselves and 

update only few parameters in an incremental manner. We empirically prove its efficiency on several 

evolving models and show that by using IS they achieve competitive results and outperform the baseline 

models. We also consider the problem of incremental learning used to handle fast growing datasets. We 

present a very detailed comparison for not only evolving models, but also for the well-known batch 

models, showing the robustness of our proposal. We perform the evaluation on various classification 

problems to show the wide application of evolving models and our proposed IS. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In many areas of research, the growth of the amount of data is 

inevitable. This is very positive for machine learning and pattern 

recognition, where the lack of data often results in low accuracy. 

However, the bigger the data is, the more time we need to process 

it and to train our models. Furthermore, if new data arrives, all 

of them need to be re-processed so that all the information is 

included. This may cause a delay in the usage of the system. 

Thus, in last few years we have been noticing more attempts for 

incremental learning of the models aimed at absorbing all the 

necessary information and at the same time lowering the burden 

of huge datasets. 

In incremental learning, the model is incrementally built 

(learned) each time new data arrives. Once the information on this 

new data is stored, the original data is often discarded and thus 

the system does not have access to the original data after. Thus, the 

model works faster than offline batch techniques. However, besides 

all the benefits, there are also challenges that ask for solutions and 

this paper aims to solve some of them described in the following: 

• Processing time vs. accuracy challenge asks how far we want to 

go with the complexity of our model in order to achieve better 

performance. 
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• At the beginning of the learning process, we can struggle with a 

lack of data, missing important information regarding the vari- 

ances within classes. This occurs especially when incremental 

learning techniques are applied to real-time recognition and 

dynamic tasks, in which the recognition does not wait for the 

whole learning process to be finished. Using incremental tech- 

niques can make the process faster, however it should not be 

done so to the detriment of high recognition capabilities. 

Incremental Similarity introduced in this paper allows to learn 

from scratch, where even a small number of samples gives reason- 

able estimate of the class. At the same time, with the increasing 

number of samples, the learning time is kept constant, learning 

only few non-matrix parameters and describing the samples 

themselves. 

In the following sections we investigate through incremental 

learning (IL) modeling approaches ( Section 2 ), then give a detailed 

description of Incremental Similarity (IS) and learning of its pa- 

rameters ( Section 3 ). We then apply IS to the baseline incremental 

and batch approaches to develop new models ( Section 4 ). At the 

end of this paper, we evaluate the performance of these models 

for various applications ( Sections 5 and 6 ). 

2. Related works 

In this paper we focus on a classification task, in which the 

aim is mainly to classify handwritten symbols. We also focus 

on online incremental learning techniques, where the learning 
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and classification are done on one sample level and the model is 

learned by small increments. 

This section briefly summarizes several groups of incremental 

or otherwise online techniques, out of which some focus on the 

clustering part only and others use clustering as one of their layers 

followed by other classification or regression layers. 

There are many works that focus on online, incremental or 

adaptive learning. Usually, researchers choose an offline method 

and adapt it to work in an online manner. There are several at- 

tempts to transfer offline clustering methods, such as K-means or 

K-NN into incremental or online learning based. From these we 

mention [1] in which the authors propose online version of K- 

means, [2,3] for incremental K-NN, or [4] for incremental vector 

quantization (VQ). 

In many applications, SVM based methods are widely used. 

Thus, there have also been attempts for incremental learning vari- 

ations, such as in [5–7] for incremental and online SVM in regres- 

sion and [8] , [9] for online SVM. 

There have been several attempts for incremental subspace 

methods, especially for images, such as in [10–12] proposing in- 

cremental PCA and [13] with online PCA. 

In [14] the authors propose an online version for bagging and 

boosting algorithms, coming up with AdaBoost (adaptive boosting). 

Another versions of AdaBoost has been proposed in [15] used for 

vision problems, [16] and [17] for multi-class online boosting. 

In this paper we focus mostly on evolving or adaptive neuro- 

fuzzy models usually based on Takagi–Sugeno fuzzy model [18] , 

or less on Mamdani model [19] . They vary in the clustering part 

that is essential for online purposes, as in offline, where the divi- 

sion of the known space is easier and more straight-forward. In 

[20] the authors propose to solve the clustering part using Re- 

cursive Mountain Clustering for space division and the creation 

of rules, which they combined with univariate normal distribution 

(antecedent part) and Recursive Least Squares (consequent part). 

This research was updated in [21] using Mahalanobis distance for 

antecedent part (similarity to rules – clusters). In [22,23] the au- 

thors utilize genetic algorithms for the rule control and generation. 

In [24] the authors solve the problem of evolution of fuzzy rules by 

using connectionist systems. In [25] we proposed to use incremen- 

tal distance and clustering, followed by [26] where we proposed to 

use ART-2A clustering [27] for the rule generation and handling. In 

[28] authors propose to use incremental VQ for the space division. 

To our knowledge, the works cited in [20,21,25,26] are closest 

to the proposition presented in our study. However, the extensive 

comparison and empirical proofing was not performed in any of 

them. 

3. Incremental Similarity 

To address some of the challenges of on-line learning, i.e. the 

complexity vs. precision, learning from scratch and learning on the 

fly, we introduce the Incremental Similarity (IS). We apply this to 

a number of baseline models to figure as a similarity measure. The 

more similar is sample x to a group of samples in a set a , the 

higher value the similarity measure takes. Thus, all the similarity 

measures in this work will be adjusted, if necessary, accordingly 

(1) with d being the distance. This results in the range of simi- 

larities to be [0, 1], where 1 is the lowest distance and highest 

similarity of sample x to the set a . 

1 

1 + d 
(1) 

In this work we show the effectiveness of IS by a comparison 

to the Euclidean (ED) and the Mahalanobis (MD) distances that we 

both explain later in this section. The baseline models we apply all 

these similarity measures to, along with the detailed description of 

the structures within these models that the similarities are used at, 

are described in Section 4 , namely Takagi–Sugeno based (similarity 

measures are used for antecedent learning) and K-means (similar- 

ity measures are used for distance from K-means ). 

3.1. Euclidean and Mahalanobis distances 

In this section we describe two basic distance measurements 

ED and MD, taking into account the nature of the membership 

function (the firing degree) – the more similar the sample is to the 

baseline of the rule, the higher firing degree this rule has. Thus, we 

calculate the reversed squared ED (2) and the reversed MD (3) as 

an opposite to the univariate and multivariate distributions. Here 

μt i 
is the mean at time t i for rule i , i.e. the number of samples al- 

ready introduced to the rule i and S t i is the covariance matrix at 

time t i for rule i . 

βi = 

1 

1 + ( μt i − x ) 
T 
( μt i − x ) 

(2) 

βi = 

1 

1 + ( μt i − x ) 
T S −1 

t i 
( μt i − x ) 

(3) 

The update of the parameters μt i 
and S −1 

t i 
can be derived from 

the univariate and multivariate normal distributions. For univariate 

normal distribution we have the probability of samples x 1 . . . x N , 

P (x 1 . . . x N ) further referred as P . 

P = 

∏ 

i 

1 √ 

2 πσ
exp 

{
−1 

2 

(x i − μ) 2 

σ 2 

}

To find the parameter μ that minimizes the error we set the 

derivation of the logarithm of the function to zero. This will lead 

to an updating formula for μ (4). 

log P = 

∑ 

i 

[
−1 

2 

log 2 π − log σ − 1 

2 

(x i − μ) 2 

σ 2 

]

∂ 

∂μ
log P = 

∑ 

i 

x i − μ

σ 2 
= 0 ⇒ 

∑ 

i 

[ x i − μ] = 0 

μ = 

1 

N 

∑ 

i 

x i (4) 

Then the recursive formula can be derived as in (5) , where t i is 

the time and it updates according to (6) . 

μt i = 

1 

t i 

(
(t i − 1) μt i −1 + x t i 

)
; μ1 = x 1 (5) 

t i = t i + 1 (6) 

For multivariate normal distribution, the derivation of μt i 
is 

similar to univariate distribution. The covariance matrix update is 

derived as follows resulting into (7) . 

P = 

∏ 

i 

1 

2 π
d 
2 

| S| − 1 
2 exp 

{ 

−1 

2 

(x i − μ) S −1 (x i − μ) T 
} 

log P = 

∑ 

i 

[
−d 

2 

log 2 π − 1 

2 

log | S| − 1 

2 

D 

]

D = (x i − μ) S −1 (x i − μ) T 

∂ 

∂S 
log P = 

∑ 

i 

[ 
−1 

2 

S −1 + 

1 

2 

(x i − μ) S −2 (x i − μ) T 
] 

= 0 

×
∑ 

i 

[
−S + (x i − μ)(x i − μ) T 

]
= 0 

S = 

1 

N 

∑ 

(x i − μ)(x i − μ) T i (7) 
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