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a b s t r a c t

Data fusion from different modalities has been extensively studied for a better understanding of multi-

media contents. On one hand, the emergence of new devices and decreasing storage costs cause growing

amounts of data being collected. Though bigger data makes it easier to mine information, methods for

big data analytics are not well investigated. On the other hand, new machine learning techniques, such

as deep learning, have been shown to be one of the key elements in achieving state-of-the-art inference

performances in a variety of applications. Therefore, some of the old questions in data fusion are in need

to be addressed again for these new changes. These questions are: What is the most effective way to

combine data for various modalities? Does the fusion method affect the performance with different clas-

sifiers? To answer these questions, in this paper, we present a comparative study for evaluating early and

late fusion schemes with several types of SVM and deep learning classifiers on two challenging RGB-D

based visual recognition tasks: hand gesture recognition and generic object recognition. The findings from

this study provide useful policy and practical guidance for the development of visual recognition systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multimodal fusion is an active research topic in multimedia

analysis [1,28]. For example, researchers improved the recognition

performance by integrating visual features (lips reading), in addi-

tion to conventional single modality audio features (voice analysis)

for speech recognition or similarly [15] combined different clas-

sifiers trained with data from several modalities. Although data

fusion has been extensively investigated for audio-visual applica-

tions, the availability of new sensory devices capable of capturing

synchronized depth and color streams has brought new challenges.

In particular, there is still a very much open issue of how, exactly,

to fuse depth and color. Moreover, new machine learning tech-

niques, such as deep learning, have been shown to be one of the

key elements in achieving state-of-the-art inference performances

in a variety of applications. However, these new devices and ma-

chine learning techniques still raise the same old questions: What

is the most effective way to integrate heterogeneous information from
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multimodal sensors? Does the design of the fusion method depend on

the corresponding applications? Does the employed classification algo-

rithm have an impact on the fusion method and the resultant accu-

racy? In this paper, we provide answers to the above questions.

In the literature, early fusion and late fusion are the two most

popular fusion schemes. While early fusion approaches integrate

data from different modalities before being passed to a classifier,

late fusion approaches integrate, at the last stage, of the responses

obtained after individual features learning the model for each de-

scriptor. Although the employment of fusion schemes is a common

technique in audio-visual domains [6,22,25], the works using RGB-

D data [13,18,21,30] are still developed through a unimodal fashion,

lacking of studies on how to effectively integrate color and depth

modalities [2,3,20,30]. In addition, although deep learning methods

have recently reported promising results when applied to various

multimedia applications [11,23,27,31], there is no explicit compar-

ison between the deep architectures and traditional classifiers to

explore which is the most suitable classification paradigm for vi-

sual recognition with RGB-D data. Typically, in RGB-D applications

a depth image is used to segment better the object of interest and

then some features are computed for depth and RGB images to af-

terwards train a classifier [8,9,12]. In contrast, we want to focus

on different levels of feature fusion and deep learning classifiers,

where an object itself is already localized and segmented from
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the image, and no pre-processing steps or other machine learning

techniques are needed.

Therefore, in this work we conduct a comparative evaluation

study of RGB-D visual recognition tasks by assessing the effective-

ness of various settings, which include different fusion schemes

(e.g., early fusion vs. late fusion) and two state-of-the-art learn-

ing mechanisms (e.g., SVM vs. deep learning). To the best of our

knowledge, this work is the first to explicitly address the fusion

evaluation for RGB-D data with deep learning classifiers.

The rest of the paper is structured as follows. Sections 2, 3,

and 4 give details about the adopted fusion methods, classifiers,

and recognition tasks, respectively. Section 5 describes how exper-

iments are carried out, and Section 6 draws the conclusions.

2. Fusion schemes

Given RGB-D data from a sensor, a typical operation is to ex-

tract features from the data and use the feature based represen-

tations to learn a multi-class classifier, i.e., a discriminant function

f : R
M × C → R where R

M is the observation space, C = {1, ...,C} is

the set of labels, and C is the number of classes. A new unlabeled

observation x ∈ R
M is classified with:

c∗(x) = arg maxc∈C f (x; c) (1)

In this study, the feature vector x is composed from data of two

different modalities, i.e. color and depth. We define xRGB as the

data from a color sensor (RGB) and xD as the data from a depth

sensor (D). The vector xRGB + xD denotes the concatenation of color

features (RGB) and the corresponding depth features (D). Thus, we

can have four different options to combine the data for our classi-

fiers:

fRGB = f (xRGB; c) (2)

fD = f (xD; c) (3)

fEARLY = f (xRGB + xD; c) (4)

fLATE = g( fRGB + fD) (5)

where g is an aggregation function for the output scores of fRGB

and fD. One of the most common aggregation functions is to use a

convex weighting scheme as follows:

fLATE = λ fRGB + (1 − λ) fD (6)

This implies to tune the parameter λ that controls the weight of

each of the modalities used. In some algorithms, e.g., Multi-Kernel

methods [29], this parameter can be adjusted at the same time

of the training phase. In our particular case, to avoid tuning extra

parameters we adopt a max function, thus we select the modality

with the maximum score.

3. Classifiers

The classifiers adopted in this study are mainly in two different

paradigms: Kernel Method and Deep Learning. The Kernel Method

paradigm has been successfully used in the past decades for com-

puter vision tasks such as object recognition and detection. More

recently, Deep Learning paradigm based on neural networks has

been demonstrated as powerful as the Kernel Method or even bet-

ter in some cases. Therefore, as a representative of the Kernel

Method, the support vector machine (SVM) algorithm is consid-

ered. For the Deep Learning, five different models are adopted, in-

cluding the convolutional neural networks (CNN), fast region con-

volutional neural network (F-RCNN) [7], stacked autoencoders (SAE),

deep belief networks (DBN), and restricted Boltzmann machines

(RBM).

Traditionally, Kernel Methods are associated with features in

an attempt to capture most discriminative parts of the image.

However, different works in texture classification [14] and gen-

der recognition [19] suggest that raw image is as good or supe-

rior as the features approach. Hence, the performance of the Kernel

Method is evaluated in both raw data and feature vectors. To ex-

tract the feature vectors, multiple descriptors have been proposed

in the existing literature, e.g., HOG, SURF, SIFT, DAISY, and MSER.

We choose the SIFT [4] descriptor because gradient based descrip-

tors have been shown to have certain properties, e.g. scale invari-

ant, among others and this makes the descriptor generally more

robust than other types of local descriptors, e.g., color histogram

based ones [26].

3.1. Kernel Method

SVM is one of the most commonly used frameworks for classifi-

cation. This classification method is devised to find the hyper-plane

that best separates the given observed data. Hence, the function

f(x; c) in SVM has the form:

f (x; c) =
N∑

i=1

αiK(x, xi) (7)

where {xi}N
i=1

is the training set, αi’s are computed during the

training phase, and K( ·, ·) is the kernel function that transforms

data onto a higher dimensional space.

We denote xRAW as the feature vector using raw pixels of either

xRGB, xD, or xRGB + xD, and xSIFT denotes the SIFT descriptor ex-

tracted from the corresponding raw data. Thus, the SVM can take

a raw image or its SIFT features as the input as follows:

SV MR = f (xRAW; c) (8)

SV MS = f (xSIFT; c) (9)

3.2. Deep Learning

A neural network is a system inspired by the human brain

where a set of interconnected “neurons” (or units) can produce

a predicted output from input data. The intermediate layers be-

tween the input layer and the output layer are called hidden lay-

ers. Therefore, by denoting the number of hidden layers n and the

input data x, the output function f(x; c) can be defined as follows:

f (x; c) = fn+1( fn(. . . f2( f1(x)) . . . )) (10)

with

fi(x; c) = σi(Wi · x + bi), (11)

where σ i is the activation function for the layer i, typically tanh or

a sigmoid function for the hidden layer (i = 1, . . . , n) and a Gaus-

sian or softmax function for the output layer (i = n + 1). Besides,

Wi and bi are the weights and the bias parameter for the layer i,

respectively. Thus the five adopted models are:

CNN = f (xRAW; c) (12)

F-RCNN = f (xRAW; c) (13)

SAE = f (xSIFT; c) (14)

DBN = f (xSIFT; c) (15)

RBM = f (xSIFT; c) (16)

Note that, as suggested in [17], CNN and F-RCNN take raw data,

and SAE, DBN and RBM take the extracted features as the input.
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