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a b s t r a c t

This paper explores the use of context on regression-based methods for facial landmarking. Regression

based methods have revolutionised facial landmarking solutions. In particular those that implicitly in-

fer the whole shape of a structured object have quickly become the state-of-the-art. The most notable

exemplar is the Supervised Descent Method (SDM). Its main characteristics are the use of the cascaded

regression approach, the use of the full appearance as the inference input, and the aforementioned aim to

directly predict the full shape. In this article we argue that the key aspects responsible for the success of

SDM are the use of cascaded regression and the avoidance of the constrained optimisation problem that

characterised most of the previous approaches. We show that, surprisingly, it is possible to achieve com-

parable or superior performance using only landmark-specific predictors, which are linearly combined.

We reason that augmenting the input with too much context (of which using the full appearance is the

extreme case) can be harmful. In fact, we experimentally found that there is a relation between the data

variance and the benefits of adding context to the input. We finally devise a simple greedy procedure

that makes use of this fact to obtain superior performance to the SDM, while maintaining the simplicity

of the algorithm. We show extensive results both for intermediate stages devised to prove the main as-

pects of the argumentative line, and to validate the overall performance of two models constructed based

on these considerations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Structured object detection is an active research area in Com-

puter Vision, where the aim is to describe the shape of an object

by locating its parts. Facial landmark detection is a prime exam-

ple of this, and it is a key step in many applications such as face

recognition or facial expression recognition, where the alignment

step based on the location of the parts is crucial to achieve a good

performance.

Existing facial landmark detection approaches are commonly di-

vided into part-based and holistic approaches. Holistic approaches

are mostly restricted to the Active Appearance Models family

([5,11]). They represent the full face appearance, and are typically

generative. Facial landmarking results in this case as a by-product

of the dense reconstruction of the face appearance. Instead, part-

based models are characterised by representing the face as a
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constellation of patches, each centred around the facial landmarks.

They are typically discriminative [15], although it is also possible to

use part-based generative models [17]. While generative methods

are capable of attaining very precise results when the search is ini-

tialised close to the solution [16], discriminative methods provide

better robustness. In this article we focus on part-based discrimi-

native models, as they are the most widely used.

Many of the existing works on part-based facial landmarking

can be cast in the Constrained Local Models (CLM) framework1

introduced by [15]. The CLM framework devises landmark de-

tection as the iterative alternation between two steps, response

map construction and response maximisation. Response maps en-

code the likelihood of any given image location of being the true

landmark location, and a different response map is constructed

for each landmark. Many works used classifiers to create these

1 The term Constrained Local Model was previously introduced by [7] prior to

the work by [15]. Furthermore, it has become somewhat common to refer to the

specific approach proposed in [15] as the CLM, while their method was introduced

only as a particular instance of the CLM framework. In this article we refer to CLM

as the general framework rather than to any specific methodology.
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landmarks (e.g. [1–3,15]). A probabilistic classifier (e.g., a logistic

regressor) can be trained to distinguish the true landmark location

from surrounding locations. At test time, the classifier can be eval-

uated over a region of interest in a sliding window manner. The

response map is then constructed using the predicted likelihoods.

The response maximisation step consists of finding the valid shape

maximising the combined per-landmark responses. Thus, this step

is a maximisation constrained by the shape model.

The shape fitting step is very challenging, and it contains multi-

ple local minima. Thus, many authors have focused their efforts on

improving this step. For example, [15] attained real-time reliable

fitting by using a Mean Shift-constrained optimisation. However,

the Mean Shift optimisation is prone to converge at local max-

ima, especially for the flexible shape parameters, responsible for

expressions. To overcome this, [3] proposed a variation of RANSAC,

so that a very large number of solutions were generated using

training set exemplars. The highest-scoring exemplars were lin-

early combined into the final solution. [1] instead used discrimina-

tively trained regressors to find adequate increments to the shape

parameters, and [2] proceeded by training a generative model

of the response maps and then using it to perform the maximi-

sation.

Recent years have seen the appearance of works employing re-

gressors instead of classifiers to exploit local appearance [18]. It

was soon shown that the regressors resulted in improved response

maps and hence better global performance (e.g. [6,10]). However,

a constrained optimisation problem was still necessary in order

to enforce shape consistency, consequently hindering performance.

Further performance improvement was attained by considering re-

gressors trained to directly infer the full shape increments neces-

sary to move from the current shape estimate to the ground truth.

That is to say, instead of using the appearance of a single landmark

to predict only the location of this landmark, the full appearance is

used to predict the entire shape, eliminating the need for a subse-

quent step enforcing shape consistency. This was pioneered by [4],

who also proposed the use of cascaded regression [8] to this end.

However, it was the Supervised Descent Method (SDM) [19] that

became the de-facto state of the art. While they maintained the

main concepts of [4], they simplified the method by using Least

Squares for regression, and concatenated per-landmark HOG fea-

tures as their feature representation. This resulted in a very simple

algorithm capable of attaining the best performance to date (only

4 matrix multiplications are involved, not counting feature extrac-

tion!).

Is thus an important line of investigation to analyse what the

key advantages are of the SDM with respect to other methods.

Several factors characterise the algorithm: the cascaded regression,

the implicit use of context (i.e., the concatenation of all the local

descriptors into a single feature vector), and the direct prediction

of the shape. Each can be argued to have merit. The cascaded re-

gression allows for combined robustness and precision, the use of

context provides an input with augmented descriptive power, and

the direct shape increment prediction removes the need for subse-

quent complex optimisation steps.

We argue that using only two of these components, to wit the

cascaded regression and the direct estimation of the shape, is suf-

ficient to produce similar or even better results to those of the

SDM. That is to say, if these two aspects are respected, similar

performance can be attained with and without context. We fur-

ther investigate to which extent the use of context within the in-

put features is necessary, exploring intermediate solutions between

landmark-independent predictions and the SDM approach. In or-

der to eliminate context from the regression models, we resort to

the sparsification of the feature covariance matrix. We show ex-

periments highlighting the relation between the amount of context

used (i.e., the sparseness of the feature covariance matrix), and the

variability of the data in terms of factors such as the head pose,

image quality, facial expressions or identity. Finally, we use this re-

lation to build a variant of the SDM algorithm with decreasingly

sparse matrices at each iteration. This algorithm can be very eas-

ily implemented given an SDM implementation, has less compu-

tational complexity, and achieves superior performance in practise.

We use the LFPW, Helen, AFW and IBUG datasets (see Section 6 for

details) to validate the analysis and to show practical performance

of the solution derived from it.

A previous version of this manuscript appeared in [14]. The

work presented in this article differs from it in that we provide a

more complete interpretation and mathematical derivation to jus-

tify the matrix sparsification, provide a link between the benefits

of sparsification and data variance that was missing in the previous

version, and we link the success of direct regression-based meth-

ods with the avoidance of constrained optimisation.

The contributions of this work can thus be summarised as:

• We analyse which are the key methodological aspects behind

the performance success of the SDM.
• We show that, surprisingly, we achieve superior performance to

the standard SDM when encoding no context within the input

features.
• We show that there is an inverse correlation between the ben-

efits of using context and the variance of the input data.
• Based on these observations, we devise a simple yet effec-

tive extension of the SDM, where each regressor uses an opti-

mal amount of context within the input features. The resulting

method is shown to outperform SDM.

2. Cascaded linear regression

Let I be a face image, for which we want to estimate the ground

truth shape sg, consisting of n facial landmarks (thus being a 2n-

dimensional vector). Let s be an estimation of the location of these

points, then φ(I, s) ∈ R
p×1, with p the dimension of the feature

space, represents the features extracted around the positions de-

fined by s within image I. The feature vector is constructed by ex-

tracting a HOG descriptor at a small patch centred around each

landmark, and then concatenating features of all patches into a

single feature vector. The regression target is defined as δ = sg − s.

That is to say, δ is the increment necessary to move from the cur-

rent estimate s to the ground truth shape sg. It is then possible to

define a linear regressor {R, b} ∈ {R2n×p, R
2n×1} tasked with trans-

lating image features into shape increments. Specifically, the incre-

ment δ is estimated as Rφ(I, s) + b and the updated shape esti-

mate is computed as δ + s. This linear regressor can be expressed

in a more compact form by defining φ̃(I, s) as the result of adding

a one to the end of φ(I, s). Then, R̃ is defined as a R
2n×p+1 matrix,

so that:

Rφ(I, s) + b = R̃φ̃(I, s) (1)

The data variance is in practise too large to attain an accurate

prediction of the true shape using only a single prediction made

by one single regressor. In the SDM, this limitation is overcome

through the use of the cascaded regression. The idea is to sequen-

tially apply a set of regressors rather than using a single one. At

test time, an initial shape estimate s0 is computed using the face

detection bounding box. Then, the cascaded regression produces

a sequence of estimates as sk = sk−1 + R̃kφ̃(I, sk−1). If the cascade

has N iterations, then sN is the estimate of s∗.

The training of the cascade starts with a data augmentation

strategy [8], which proceeds by generating m different initial

shapes for each of the nim training images. These shapes can for

example be generated by aligning a reference shape (e.g. the mean
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