
Pattern Recognition Letters 68 (2015) 1–8

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Generative part-based Gabor object detector✩

Ekaterina Riabchenko a, Joni-Kristian Kämäräinen b,∗

a Department of Mathematics and Physics, Lappeenranta University of Technology, Finland
b Department of Signal Processing, Tampere University of Technology, Finland

a r t i c l e i n f o

Article history:

Received 20 March 2015

Available online 20 August 2015

Keywords:

Gabor feature

Gaussian mixture model

Object detection

Visual classification

Generative learning

a b s t r a c t

Discriminative part-based models have become the approach for visual object detection. The models learn

from a large number of positive and negative examples with annotated class labels and location (bounding

box). In contrast, we propose a part-based generative model that learns from a small number of positive

examples. This is achieved by utilizing “privileged information”, sparse class-specific landmarks with seman-

tic meaning. Our method uses bio-inspired complex-valued Gabor features to describe local parts. Gabor

features are transformed to part probabilities by unsupervised Gaussian Mixture Model (GMM). GMM esti-

mation is robustified for a small amount of data by a randomization procedure inspired by random forests.

The GMM framework is also used to construct a probabilistic spatial model of part configurations. Our detec-

tor is invariant to translation, rotation and scaling. On part level invariance is achieved by pose quantization

which is more efficient than previously proposed feature transformations. In the spatial model, invariance

is achieved by mapping parts to an “aligned object space”. Using a small number of positive examples our

generative method performs comparably to the state-of-the-art discriminative method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Discriminative part-based models have become the approach

for visual object detection and achieve state-of-the-art for various

datasets, e.g., Caltech-101 [10], Caltech-256 [16] and Pascal VOC [9].

Part-based models have two detection stages: detection of object

parts and verifying detected parts’ spatial configuration (constella-

tion). The first methods with explicit spatial models were genera-

tive [11,43], but recent methods are based on discriminative learning

from a large number of positive and negative examples with man-

ually annotated class labels and location, e.g., the deformable part-

based model (DPM) by [13,14].

The recent “big visual data” datasets, such as the ImageNet ILSVRC

[8,34], provide sufficient number of data for training deep architec-

tures with millions of parameters to be optimized [22,37] and which

are superior to the previous part-based models. However, with lim-

ited data and in specific applications part-based models and hybrids

of deep architectures and part-based models perform extremely well

[25,41,42]. Despite dominance of discriminative learning in visual

classification, generative models have desirable properties such as

prior probabilities, learning from unlabeled data and visual synthe-

sis, and therefore provide an alternative approach to be investigated.
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In this work, we propose a part-based generative model (Fig. 1)

that learns from a small number of positive examples. This is

achieved by utilizing “privileged information”, sparse class-specific

landmarks with semantic meaning. Our method uses bio-inspired

complex-valued Gabor features to describe local parts. Gabor features

are transformed to part probabilities by unsupervised Gaussian Mix-

ture Model (GMM) probability densities. GMM estimation is robus-

tified for a small amount of examples by novel randomized training

inspired by random forests. GMMs are also used to represent spatial

probabilities of the part configurations. Our detector is invariant to

translation, rotation and scaling. On the part level, this is achieved

by pose quantization which is more efficient than the previously pro-

posed feature transformations [20]. In the spatial level, invariance is

achieved by mapping parts to an “aligned object space”. Using a small

number of positive examples our generative method performs com-

parably to the state-of-the-art discriminative method.

2. Related work

Part-based models – The visual Bag-of-Words (BoW) [6,38]

methods are omitted here since their spatial models are not explicit

(see the recent survey by [19]). The first part-based methods with

constellation models were generative [11,12,43], but since then the

field has been dominated by discriminative learning and, in particu-

lar, the deformable part-based model (DPM) by [13,14]. Recently, [45]

introduced a generative FRAME model which also uses Gabor fea-

tures, but the model is computationally intensive, window-based and
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Fig. 1. Workflow of our generative learning and detection.

embeds geometry variation to appearance. [1] proposed a generative

poselet model for part-based human pose detection, but its general-

ity to other classes is unclear. Our method differs rather strongly from

the above by the facts that it is generative, is generic, and has explicit

models for the parts and constellation.

In particular, we extend our previous works of Gabor feature ex-

traction [23] and Gaussian mixture model probabilistic part descrip-

tor [30]. Our quantized object pose space (Section 5.1) avoids the

computationally expensive matrix shifts in [23] and the proposed

randomized Gaussian mixture model (Section 4.3) can exploit a large

Gabor filter bank and still learn a model from a few examples instead

of hundreds required in [30]. Preliminary results have been published

in two conference papers, part detector in [33] and spatial model in

[32], while this work refines the theory to form a single probabilis-

tic framework, simplifies computation and improves performance by

the quantized pose space, reports results from extensive experiments

along with the full source code available in a public repository1.

Contributions – We make the following contributions:

• A probabilistic (generative) local part descriptor using complex-

valued multi-resolution Gabor features.

- In contrast to a small size Gabor bank used in the literature,

we use a large bank and propose a method to identify a part-

specific subset of the filters.

- We avoid using heuristic prior distributions to learn from a

small number of training examples by a novel random forest

inspired generative learning procedure: randomized Gaussian

mixture model.

- We propose a likelihood-driven part detection procedure with

efficient non-maximum suppression.
• A probabilistic part spatial constellation model in “aligned object

space”

- The model combines the probability terms of parts and their

constellation.

- The aligned space is formed by quantizing object appearances

over rotation and scales.
• In extensive experiments on Caltech and ImageNet images our

method performs favorably to the popular DPM.

3. Local Gabor descriptor

Gabor features have been successful in many vision applications

such as iris and face recognition [7,36]. They are considered as texture

descriptors [2,18,26], but local part description was one of the first

applications [24,44]. We adopt the multi-resolution Gabor feature -

“simple Gabor feature space” - by [20,23]:

ψ(x, y) = f 2

πγη
e

−
(

f 2

γ 2 x′2+ f 2

η2 y′2
)

e j2π f x′

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ . (1)

1 https://bitbucket.org/EkaterinaRiabchenko/gabor_object_detector_code/.

f is the discrete tuning frequency, θ the rotation angle, γ the sharp-

ness (bandwidth) of the major axis, and η of the minor axis. The spa-

tial domain filter in (1) is a complex plane wave (a 2D Fourier basis

function) multiplied by a Gaussian, and in the frequency domain it is

a single real-valued Gaussian centered at f. The multi-resolution form

and parametrisation in (1) enforces self-similarity: filters are scaled

and rotated versions of each other, “Gabor wavelets”.

Multi-resolution Gabor features are constructed from responses

of filters tuned to the multiple frequencies fm and orientations θn.

Scales (f) are drawn from the exponential scale

fm = k−m fmax, m = {0, . . . , M − 1} (2)

where fm is the mth frequency, f0 = fmax is the highest frequency, and

k > 1 is the frequency scaling factor. The filter orientations are uni-

formly sampled:

θn = n2π

N
, n = {0, . . . , N − 1} (3)

where θn is the nth orientation and N is their total number.

The multi-resolution Gabor parameters fmax, k, M, N, γ and η are

redundant and an intuitive parametrisation is to set the filter cross

points to p = 0.5 when the filter envelopes cross at the half mag-

nitude providing sufficient “shiftability” [35]. In that case, the ad-

justable parameters are the highest frequency fmax, the number of

frequencies m and the number of orientations n. The bandwidths γ
and η are automatically set.

Descriptor invariance – The simple Gabor feature space part de-

scriptor at the location (x0, y0) forms a Gabor response matrix:

G =

⎛
⎜⎜⎜⎝

r(x0, y0; f0, θ0) r(x0, y0; f0, θ1) · · · r(x0, y0; f0, θn−1)

r(x0, y0; f1, θ0) r(x0, y0; f1, θ1) · · · r(x0, y0; f1, θn−1)

..

.
..
.

. . .
..
.

r(x0, y0; fm−1, θ0) r(x0, y0; fm−1, θ1) · · · r(x0, y0; fm−1, θn−1)

⎞
⎟⎟⎟⎠

(4)

where rows denote different frequencies and columns orientations.

The first row is the highest frequency f0 = fmax and the first column

θ0 = 0◦.

Column and row shifts of the response matrix provide invariance

to geometric transformations, scaling and rotation [20]. For example,

anti-clockwise rotation of an image by π
N corresponds to a single shift

operation:

⎛
⎜⎜⎜⎝

r(x0, y0; f0, θn−1)
∗ r(x0, y0; f0, θ0) ⇒ r(x0, y0; f0, θn−2)

r(x0, y0; f1, θn−1)∗ r(x0, y0; f1, θ0) ⇒ r(x0, y0; f1, θn−2)

.

.

.
.
.
.

. . .
.
.
.

r(x0, y0; fm−1, θn−1)
∗ r(x0, y0; fm−1, θ0) ⇒ r(x0, y0; fm−1, θn−2)

⎞
⎟⎟⎟⎠

(5)

A similar shift operation exists for scaling, but in Section 5.1 we

show that object poses are heavily “quantized” in the datasets and

we propose invariant matching without the shift operations.

Importance of complex phase – Unlike the most other works

which use only the magnitude information, our Gabor feature de-

scriptor is complex-valued which is justified by the three important

findings: (1) the phase information plays a dominant role for visual

representation (Fig. 2) [29]; (2) complex representation provides su-

perior performance (see the experiments section); and (3) complex

covariance matrix is more compact in our Gaussian mixture model

probability density (Section 4.2).

4. Learning and detecting object parts

Our generative model builds upon the probabilistic models of

object parts Fi, p(G|Fi), where G is the local Gabor descriptor com-

puted at location (x0, y0). Our workflow has three processing stages

https://bitbucket.org/EkaterinaRiabchenko/gabor_object_detector_code/
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