
Pattern Recognition Letters 68 (2015) 41–47

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

A neural tree for classification using convex objective function✩

Asha Rani a,∗, Gian Luca Foresti b, Christian Micheloni b

a CVGIP Lab, Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
b AVIRES Lab, Department of Mathematics and Computer Science, University of Udine, Udine 33100, Italy

a r t i c l e i n f o

Article history:

Received 3 January 2015

Available online 6 September 2015

Keywords:

Neural tree

Artificial neural networks (ANNs)

Mean squared error

Pattern classification

Perceptron

Convex optimization

a b s t r a c t

In this paper, we propose a neural tree classifier, called the convex objective function neural tree (COF-NT),

which has a specialized perceptron at each node. The specialized perceptron is a single layer feed-forward

perceptron which calculates the errors before the neuron’s non-linear activation function instead of after

them. Thus, the network parameters are independent of non-linear activation functions, and subsequently,

the objective function is a convex objective function. The solution can be easily obtained by solving a system

of linear equations which will require less computational power than conventional iterative methods. During

the training, the proposed neural tree classifier divides the training set into smaller subsets by adding new

levels to the tree. Each child perceptron takes forward the task of training done by its parent perceptron on the

superset of this subset. Thus, the training is done by a number of single layer perceptrons (each perceptron

carrying forward the work done by its ancestors) that reach the global minima in a finite number of steps.

The proposed algorithm has been tested on available benchmark datasets and the results are promising in

terms of classification accuracy and training time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks (ANNs) have been used in a number of

scientific and engineering applications. ANNs [1] have proven to be

very powerful for classification and regression tasks. Still, there is a

major issue associated with their use-they are very much dependent

on architecture. The ANN architecture is not unique for a given prob-

lem as there may exist different ways of defining an architecture for

a specific problem. Depending on the problem, it may require one or

more hidden layers, feed-forward or feedback connections, and there

may be direct connections between input and output nodes. Several

solutions have been proposed in the literature to tackle this issue.

Neural trees are one such solution [2–5].

Neural trees have been used in a broad area of problems. Some

of these problems include vowel recognition [6], character recogni-

tion [7], face recognition [8], image analysis [9], time series predic-

tion [10], disease classification [11], outlier detection in stereo image

matching [12], digital image watermarking [13,14], novelty detection

[15], traffic prediction [16], protein structure prediction [17], power

signal pattern classification [18], and water stage forecasts in river

basin during typhoons [19].

Neural trees are hybrid structures between decision trees and

artificial neural networks that were developed to determine the

✩ This paper has been recommended for acceptance by G. Moser.
∗ Corresponding author. Tel.: +91 1332 285824.

E-mail address: asha0chaudhary@gmail.com (A. Rani).

structure of artificial neural networks automatically [4,20–22]. Sethi

[23] described a method for converting a univariate decision tree into

a neural network and then retraining it, resulting in a tree structured

entropy network with sigmoid splits. Guo and Gelfand [24] devel-

oped a decision tree with multi-layer perceptrons at each node, giv-

ing non-linear and multivariate splits. In the last two decades efforts

have been done to optimize the structure of neural trees by punning

techniques [25,26]. In [25], the tree is pre-pruned by removing some

patterns that lead to over-fitting and add quite a few levels to the tree.

In [26], a uniformity factor has been introduced to pre-prune the tree

branches. Such a factor stops the tree growing further by accepting

some error, bounded by a threshold. Different variants of stochastic

search methods have been used for the development of structure and

parameter identification [8,10,16]. Based on the kind of optimization

strategy different kinds of neural trees have been distinguished in the

literature such as the balanced neural tree (BNT) [25], flexible neu-

ral tree (FNT) [27], and generalized neural tree (GNT) [28]. Different

variants of artificial neural networks, such as high-order perceptrons

(HOP) [29], multi-layer perceptrons (MLP) [26], and radial-basis func-

tions (RBF) [30,31] have been used as decision taking units at nodes

of the neural tree. Apart from the several kinds of hybrid neural trees,

exploiting more than one type of classification unit has also been

undertaken [8,32–35].

Although there are several kinds of neural tree classifiers pro-

posed in the literature employing various kinds of learning machines

such as MLP, HOP, RBF, etc., the use of a single layer perceptron (SLP)

as the decision taking unit has its own advantages. SLPs are simple

http://dx.doi.org/10.1016/j.patrec.2015.08.017

0167-8655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2015.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.08.017&domain=pdf
mailto:asha0chaudhary@gmail.com
http://dx.doi.org/10.1016/j.patrec.2015.08.017


42 A. Rani et al. / Pattern Recognition Letters 68 (2015) 41–47

to implement and computationally cheaper compared to above the

mentioned learning machines. They operate with a minimum num-

ber of ad-hoc parameters. In the proposed COF-NT, the necessity of

ad-hoc parameters such as learning rate, number of iterations, er-

ror tolerance threshold, etc. is completely eliminated. Neural trees

based on single layer neural networks or multi-layer neural networks

use conventional iterative learning schemes to optimize the mean

squared error (MSE) objective function. The conventional MSE is a

non-convex objective function due to superimposition of several con-

vex functions. As a result, the learning process has a tendency to stick

in local minima and does not obtain optimal solution. The conse-

quence is an enlarged tree structure with a poor generalization capa-

bility or a non-converging tree building process. Other than this, due

to iterative learning schemes, these kinds of neural trees need longer

training times. In this paper, we propose a new neural tree classi-

fier, called the Convex Objective Function Neural Tree (COF-NT), that

uses a specialized single layer perceptron using a convex objective

function. In this objective function, the mean squared error is com-

puted before the non-linear activation function. As the new objective

function is a convex function, the optimal solution can be obtained

analytically by equating derivatives to zero, giving a system of linear

equations. Thus, the weights of the COF-NT network are computed by

solving a system of linear equations, which is much faster than itera-

tive schemes.

2. Description of the COF-NT classifier

A single layer perceptron is easy to train compared to a multi-

layer perceptron. However, although a single layer perceptron uses

a non-linear activation function in its output layer, it still has only a

linear discrimination capability [36]. A non-linear performance can

be obtained by using single layer perceptrons in a non-linear struc-

ture, such as in a tree structure. The proposed COF-NT classifier has

specialized single layer perceptrons with convex objective functions

at each node. We will discuss the perceptron with convex objective

functions in later sections. A neural tree learns the training set (TS) by

partitioning it into smaller subsets called local training sets (LTS). It

has a unique root node, several internal nodes, and several leaf nodes.

2.1. Training phase

The training process starts at the root node with whole training

set as input. A single layer feed-forward neural network with convex

objective function (perceptron) is trained at the root node. A trained

perceptron splits the training set into subsets depending on the gen-

erated activation values for each of the outputs. The winner-takes-all

rule is applied to classify a pattern, i.e. a pattern belongs to the class

the having highest activation value. Thus, all the patterns present in

the current LTS are further divided into groups/LTS. Child nodes are

added to the tree at the next level corresponding to each LTS. A single

layer neural network is trained at the child node for learning the cor-

responding LTS. The tree keeps on growing by adding child nodes and

the training process proceeds until all the LTS become homogeneous.

A homogeneous LTS is a set consisting of patterns that belong to a sin-

gle class. Furthermore, classes are not mixed. When an LTS becomes

homogeneous, the node corresponding to this LTS is marked as a leaf

node and labeled by the class to which the pattern of this LTS belongs.

When all the nodes at the current level (the latest level) become leaf

nodes, the tree stops growing and the training process are complete.

Some times the perceptron is unable to divide the LTS in further

groups (see discussion in later sections). In such a case, the percep-

tron is replaced by a binary classifier that divides the LTS based on

features having maximum variance among two dominating classes

present in the LTS. Such a classifier splits the LTS into two LTSs. Now

the tree model is ready for classifying unseen patterns of a similar

Fig. 1. Flow chart diagram of COF-NT (training phase).

type. A flowchart describing the training phase of COF-NT is shown in

Fig. 1.

2.2. Classification phase

The already build tree model is traversed in a top-down approach

to classify a test pattern. A test pattern starts traversing the tree at the

root node and moves down until it reaches a leaf node. The label of

the leaf node tells the class of the test pattern. There are several paths

in a tree, out of these paths which path a pattern will take, has to be

decided by the weights of the single layer perceptron stored at each

node during the training process. The perceptron generates activation

values for a pattern for each of the possible classes using the weights.

The highest activation value tells the class, and in turn, the path, to

be taken by the test pattern. In cases, where a test pattern reaches a

binary split node, a prefixed threshold decides the path to be taken

by the test pattern. A flowchart describing the classification phase of

COF-NT is shown in Fig. 2.



Download English Version:

https://daneshyari.com/en/article/536213

Download Persian Version:

https://daneshyari.com/article/536213

Daneshyari.com

https://daneshyari.com/en/article/536213
https://daneshyari.com/article/536213
https://daneshyari.com

