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a b s t r a c t

A new spatio-temporal filtering scheme based on the mean-shift procedure, which computes unsupervised

spatio-temporal filtering for univariate feature evolution, is proposed in this paper. Our main contributions

are on one hand the modification of the spatial/range domains to appropriately integrate the temporal feature

into the mean-shift iterative form and on the other hand the addition of a trajectory constraint in the feature

space with the use of the infinity norm. Therefore, only the samples living the same life in the feature space

will converge. Major assets of the standard mean-shift framework such as convergence and bandwidth pa-

rameters adjustment are preserved. In this paper, we study the relative importance of the bandwidth param-

eters and the efficiency of the proposed method is assessed on synthetic data and compared to the standard

mean-shift framework for spatio-temporal data filtering. The obtained results have allowed us to undertake

a first study on real data, which has led to encouraging results in identifying spatio-temporal evolution of

multiple sclerosis lesions appearing on T2-weighted MR images.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the dramatic increase of longitudinal acquisitions in the

past decades such as video sequences, global positioning system

(GPS) tracking or medical follow-up, many applications for time-

series data mining have been developed. Thus, unsupervised time-

series data mining has become highly relevant with the aim to auto-

matically detect and identify similar temporal patterns in time-series

datasets.

Several time-series clustering methods have been proposed for

forecasting based on the study of signal correlations [28], shape

attributes [14,25] or evolution models [18]. The work presented

in [24] introduces an unsupervised and parameter-free method to

mine regimes (patterns) and transitions (discontinuities) in large co-

evolving time-series but does not cluster similar evolution. Accord-

ing to [1], the only known methods that can be generalized to multi-

variate time-series clustering are the ones proposed in the domain of

spatial trajectories [4,17,22,33].

However, some works have already been published in the con-

text of video streams analysis where multivariate image sequences
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are often being processed, e.g. which evolving features are a combi-

nation of the spatial and the color information. The major issues in

this context are image enhancement and filtering to facilitate detec-

tion, tracking and patterns segmentation. Many studies dealing with

image sequence filtering or restoration have been conducted since

the early 90’s (see [5]). For example, [11] briefly described how to ex-

tend the mean-shift (M-S) framework to the space/time domain in

order to filter video sequences. Approaches using M-S for color video

segmentation have also been proposed [9,19,32]. In these works, pix-

els of each frame were considered as independent samples, i.e. M-S

was not used to filter the temporal evolution of the features associ-

ated to a pixel. Rather, in these publications M-S was used to filter

multi-channel (e.g. RGB) video volumes (2D+t) or features previously

derived for each pixel of these volumes. [31] and more recently [23]

have proposed new approaches exploiting both the spatial and the

temporal redundancies of the data and compared them with the most

efficient ones known so far for spatio-temporal video filtering. Never-

theless the performance of these methods is dependent on the choice

of a motion estimator, which is the most challenging step.

The M-S technique, which has been proposed by Fukunaga and

Hostetler [12] can be used in the context of image filtering and seg-

mentation [8]. M-S has already been applied to spatio-temporal data

filtering [3,11] and some works were published on longitudinal MRI

processing with M-S [2,6,20]. However, they have neither directly
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used the time information, reducing it to a scalar value, nor explic-

itly formulated how to handle the temporal dimension. In contrast,

we claim to explain how to extend M-S to spatio-temporal data by

adding a constraint on the evolution of the samples over time. Only

the samples sharing a similar evolution pattern of their feature will

contribute to the data filtering. The standard M-S principle and our

main contribution, the extension of the M-S procedure by specifi-

cally taking into account the temporal dimension, are introduced in

Section 2. Section 3 presents the validation protocol while Section 4

evaluates our method on both simulated data, with comparison to

filtering outputs obtained with M-S, and real data.

2. Methods

2.1. Mean shift procedure

Let us consider X the image sample set in the D-dimensional spa-

tial/range domain as input samples of the M-S procedure:

X = {xi}i=1...n with xi ∈ R
D: input samples

i = 1, . . . , n: sample index (1)

A sample’s new position at iteration k + 1 is computed with:
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where d is the Mahalanobis distance between two samples u and v of

R
D and is defined as:

d(u, v, H) =
√

(u − v)
′
H−1(u − v) (3)

with H the bandwidth matrix, squared and positive definite.

The function g : R
+ → R

+ is the “neighborhood function”, that

acts as a weight function of the squared Mahalanobis distance.

This M-S formulation describes the blurring M-S scheme [12],

where the updated values of the samples are used at each iteration

to reach the density maximum until no significant shift is observed

between two consecutive iterations. As shown by Cheng [7] and [10],

the blurring procedure is ensured to converge.

2.2. Proposed approach: STM-S

In this section we describe our main contribution: a novel ap-

proach allowing spatio-temporal time-series filtering based on the

M-S framework. We shall name this procedure spatio-temporal

mean-shift (STM-S ).

Let us now consider a set of n samples located at the positions{
xs,i

}
i=1...n

and a set of feature values evolving over time
{

xt,i

}
i=1...n

.

The number of spatial dimensions and time-points are respectively

noted S and T. The input data set X = {xi}i=1...n is now defined as fol-

lows:

xi =
[
x

′
s,i x

′
t,i

]′
∈ X with xs,i ∈ R

S: spatial domain

xt,i ∈ R
T : temporal domain (4)

i = 1, . . . , n: sample index

Considering these notations, we propose the following equation to

iteratively compute the STM-S filtering of each sample:
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where Spi, j(·) and Rai, j(·) are respectively the weighted distances of

the spatial and the temporal domains between a sample of interest xi

and another sample xj (xi and x j ∈ R
S+T ):
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The combination of the weighted distances in (5) leads to the weights

associated to each sample involved in the STM-S computation. Unlike

the standard M-S approach, the distances between the samples are

not calculated in the same way for the spatial and the temporal di-

mensions. In the spatial domain, the Mahalanobis distance ds(us, vs,

Hs) is computed between two samples us and vs where Hs is the spa-

tial bandwidth matrix of size S × S. In contrast, to compute the dis-

tance between the features evolving in the temporal domain we use

the infinity norm:

dr(ut, vt, Hr) =‖ H
− 1

2
r (ut − vt) ‖∞ (8)

where Hr is the bandwidth applied on the temporal feature values, a

square matrix of size T × T. This distance corresponds to the biggest

distance between two samples in the temporal feature space, with

values scaled by the bandwidth matrix Hr.

The samples that will be kept for the mean computation (5) are

the ones close enough to the sample of interest over their evolu-

tion. Thus, the samples participating in the STM-S computation are

selected with respect to the closeness of their spatial positions and of

their temporal trajectories to the sample of interest. In this work, we

use the same profile function g to weight both distances:

gs

(
d2

s (·)
)

= gr

(
d2

r (·)
)

=
{

1 if d2
s (·), d2

r (·) ≤ 1

0 otherwise
(9)

Eq. (7) ensures that Ra
[k]
i, j

becomes zero if the distance between

two trajectories at a given time point exceeds 1. Consequently, tra-

jectories far from the reference will be excluded from the STM-S

computation.

A graphical example of the sample selection described above is

illustrated in Fig. 1. Although the red sample is included in the spatial

neighborhood of the reference sample (the blue one) it will not be

kept for its update because the candidate evolution lies outside the

reference evolution boundary. On the contrary, the green sample is

both spatially and temporally close enough to the reference sample to

participate to its update. It is important to note that only one spatial

value is kept for each sample because a pixel position is the same in

Fig. 1. The left plot shows the spatial features of the samples extracted from a 2D im-

age at the first iteration (k = 0). The right plot shows the grey level evolution of three

samples, the evolution are associated to the spatial features with the same color. The

blue color identifies the reference sample, while the green color and the red color iden-

tify two candidate samples. The dotted blue lines represent the boundaries defined by

the infinity norm applied on the grey level evolution of the reference sample. Candi-

date evolution values must lie between these limits during the whole time-course to

be taken into account in (5). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article).
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