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a b s t r a c t

Branch-and-bound (B&B) feature selection finds optimal feature subsets without performing an exhaustive

search. However, the classification accuracy achievable with optimal B&B feature subsets is often inferior

compared to the accuracy achievable with other algorithms that guarantee optimality. We argue this is due to

the existing criterion functions that define the optimal feature subset but may not conceive inherent nonlin-

ear data structures. Therefore, we propose B&B feature selection in Reproducing Kernel Hilbert Space (B&B-

RKHS). This algorithm employs two existing criterion functions (Bhattacharyya distance, Kullback–Leibler

divergence) and one new criterion function (mean class distance), however, all computed in RKHS. This en-

ables B&B-RKHS to conceive inherent nonlinear data structures. The algorithm was experimentally compared

to the popular wrapper approach that has to use an exhaustive search to guarantee optimality. The classifi-

cation accuracy achieved with both methods was comparable. However, runtime of B&B-RKHS was superior

using the two existing criterion functions and even completely out of reach using the new criterion function

(about 60 times faster on average). Therefore, this paper proposes an efficient algorithm if feature subsets

that guarantee optimality have to be selected in data sets with inherent nonlinear structures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Algorithms for feature selection may be grouped into two cat-

egories: wrapper and filter approaches [1]. The wrapper approach

evaluates a feature subset by estimating the classifier’s performance

on the feature subset. Feature selection is linked to and guided by

the classifier. However, to find the optimal feature subset, the wrap-

per approach has to examine all possible subsets using an exhaustive

search.

The filter approach evaluates a feature subset by computing a cri-

terion function on the feature subset. Feature selection is indepen-

dent of and detached from the classifier. To find the optimal feature

subset, the filter approach can avoid an exhaustive search using the

branch-and-bound (B&B) search method [2]. This advantage is facili-

tated by the usage of monotonic criterion functions.

However, despite this advantage over the wrapper approach, the

classification accuracy of optimal B&B feature subsets—similar to fea-

ture subsets of other filter approaches—is often inferior compared

to the classification accuracy achievable with the wrapper approach

(Section 4; [1,3]).

✩ This paper has been recommended for acceptance by Prof. M.A. Girolami.
∗ Corresponding author. Tel.: +49 9131 8528980; fax: +49 9131 303811.

E-mail address: matthias.ring@cs.fau.de (M. Ring).

We argue this is due to the criterion functions that have been em-

ployed in B&B feature selection so far. The criterion functions were

the Bhattacharyya distance, Patrick–Fisher distance, Mahalanobis

distance and divergence [2,4–10]. All these functions are defined as

integrals over probability density functions [11, Chapter A.2.2]. In the

context of B&B feature selection, it is assumed that the data follows a

normal distribution, and in this case, the integrals simplify to closed-

form terms. Since normal distributions are defined by mean and co-

variance, the closed-form terms are based on the estimated mean and

covariance of the data. Consequently, B&B feature selection searches

the optimal feature subset on basis of mean and covariance. Clearly,

these two measures may not conceive inherent nonlinear structures

that might be present in complex classification problems. See Fig. 1

for an illustration.

Therefore, we propose B&B feature selection in Reproducing Ker-

nel Hilbert Space (RKHS). Kernel methods have been applied to var-

ious problems if data contained inherent nonlinear structures, e.g.,

classification, regression, or data analysis [12]. There are also algo-

rithms for feature selection that work with kernel methods, e.g.,

[13–15]. The contribution of this paper is to show that B&B feature

selection is also able to work with kernel methods. In detail, we show

that B&B feature selection in RKHS (B&B-RKHS) finds optimal feature

subsets that achieve classification accuracies comparable to the pop-

ular wrapper approach. However, B&B-RKHS finds these optimal fea-

ture subsets faster than the wrapper approach that has to employ an
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Fig. 1. A synthetic classification problem, consisting of two classes (◦, �) and four fea-

tures (x1, . . . , x4), is illustrated by projections onto the x1–x2-plane (left) and the x3–

x4-plane (right). The classes are perfectly separable in the x1–x2-plane, e.g., using the

dashed line as decision boundary. In contrast, in the x3–x4-plane, some patterns of the

◦-class cannot be distinguished from patterns of the �-class (gray-filled area). Never-

theless, if two out of the four features have to be selected, previous B&B algorithms

favor features 3 and 4 over features 1 and 2. This is because, for example, the Bhat-

tacharyya distance JB is greater for features 3 and 4 (JB = 1.09) than for features 1 and

2 (JB = 0.74). The proposed B&B-RKHS algorithm favors features 1 and 2 over features

3 and 4. This is because the Bhattacharyya distance in RKHS JRKHS
B (polynomial kernel,

b = 1, p = 3, r = 3) is greater for features 1 and 2 (JRKHS
B = 3.2 × 10−3) than for features

3 and 4 (JRKHS
B = 9.0 × 10−6). Thus, B&B-RKHS enables the classifier to correctly classify

all patterns, in contrast to previous B&B algorithms.

exhaustive search to guarantee optimality. To the best of our knowl-

edge, the application of B&B feature selection in RKHS has not been

explored in the literature so far.

2. Methods

Branch-and-bound feature selection consists of two components

that may be exchanged independently. The first component is the

search method that defines the order in which feature subsets are

examined. The second component is the criterion function that eval-

uates individual feature subsets.

The following sections describe these two components for B&B-

RKHS. First, the search method is described (Section 2.1), and second,

two methods are described to evaluate criterion functions in RKHS

(Sections 2.2 and 2.3). Finally, this section is concluded with an algo-

rithmic summary of all individual steps in B&B-RKHS (Section 2.4).

2.1. Search method

The proposed B&B-RKHS employs the currently most efficient,

non-heuristic B&B search method. Note that there are also heuristic

improvements for B&B search [2,7–10]. However, heuristics are not

employed because of two reasons. First, the heuristic assumptions

are not generally valid for every data set. Second, the efficiency of the

heuristic assumptions may not be valid in combination with evalua-

tion in RKHS. This would require detailed experiments which are out

of the scope of this paper.

The following sections first introduce the notation and some pre-

liminaries. Then, the three algorithms that together define the cur-

rently most efficient, non-heuristic B&B search method are described.

2.1.1. Notation and preliminaries

Given a feature set F ′ = {1, 2, . . . , D} of size D, B&B finds the opti-

mal feature subset F� ⊂ F′ of size d < D. The optimal subset F� is de-

fined as

F � = argmax
F⊂F ′,|F |=d

J(F), (1)

where J is the criterion function. The prerequisite of B&B search is

that the criterion function J must be monotonic. This means that J

must guarantee for every pair of subsets Fi and Fj, with Fi ⊂ Fj ⊆ F′,
that J(Fi) ≤ J(Fj) is fulfilled. As described in the next section, this very
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Fig. 2. The B&B search tree to select d = 2 out of D = 5 features. The root represents

the full feature set F ′ = {1, 2, 3, 4, 5}. All other nodes represent subsets that are de-

fined by removing the displayed feature from the subset of the parent node. The leaves

represent all possible candidate subsets F of size d. Exemplarily, the feature subsets for

nodes of the right-most branch are written next to the nodes. Note that the right-most

child of every node (white-filled nodes) has only one successor. As an improvement,

subsequent white-filled nodes can be replaced by a single node that represents the

candidate subset at the end of the branch [4]. The star- and square-formed nodes de-

scribe another improvement. If the criterion function at the star-formed node is less

than the current bound, monotonicity ensures that the criterion function at the square-

formed node is also less than the current bound [5]. Examination of the square-formed

node is not necessary.

prerequisite of monotonicity enables B&B to find the optimal subset

faster than an exhaustive search.

2.1.2. Branch-and-bound search

Narendra and Fukunaga [2] first applied B&B search to feature se-

lection. They created a search tree in which the root represents the

full feature set F′ and the leaves represent all possible candidate sub-

sets F of size d. Every node on a path from the root to a leaf represents

a feature that is removed from the full feature set F′ to obtain the can-

didate subset F. The search tree is constructed so that the right-most

child of every node has only one successor. Hence, for fixed values

of d and D, the tree has always the same structure. See Fig. 2 for an

example or the work of Narendra and Fukunaga [2] for the formal tree

construction algorithm.

To find the optimal subset F�, the tree is searched with a depth-

first strategy from right to left. In Fig. 2, the first candidate subset F of

size d is {1, 2}. The criterion function at this leaf gives the initial bound

B = J({1, 2}). Then, the depth-first search backtracks to the root and

to the next child of the root, i.e., node {1, 3, 4, 5}. If the criterion func-

tion at this node is less than or equal to the current bound, i.e., J({1,

3, 4, 5}) ≤ B, the subtree below this node is discarded. Monotonicity

of J guarantees that the criterion function at the leaves in this subtree

is less than or equal to the current bound B. This means the criterion

function at the candidate subsets {1, 3}, {1, 4} and {1, 5} cannot be

better than the criterion function at the candidate subset {1, 2}. This

very situation enables B&B to save examinations of candidate subsets

that an exhaustive search would examine, namely {1, 3}, {1, 4} and {1,

5}. On the other hand, if the criterion function at node {1, 3, 4, 5} is

greater than the current bound, i.e., J({1, 3, 4, 5}) > B, the depth-first

search continues. It continues either until the criterion function falls

under the current bound at an inner node, or until a leaf is reached

and the bound can be updated.

Yu and Yuan [4] extended the algorithm of Narendra and Fuku-

naga [2]. They replaced the right-most branch of every node (white-

filled nodes in Fig. 2) by a single node that represents the candidate

subset at the end of the branch. This trick saves unnecessary evalu-

ations of the criterion function at inner nodes. In Fig. 2 for example,

the three white-filled nodes in the right-most branch of the root can

be replaced by a single node that represents the candidate subset {1,

2}.

Chen [5] further extended the algorithm of Yu and Yuan [4]. He

stored subsets that fall below the current bound. If a later-examined

subset Fi is a subset of a stored subset Fj, i.e., Fi ⊂ Fj, the subtree at Fi

is discarded without examination. Monotonicity guarantees B ≥ J(Fj)

≥ J(Fi). In Fig. 2 for example, assume that subset {1, 4, 5}, i.e., the star-

formed node, falls below the current bound. The subset is stored and
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