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a b s t r a c t

In the AdaBoost framework, a strong classifier consists of weak classifiers connected sequentially. Usually

the detection performance of the strong classifier can be improved increasing the number of weak classifiers

used, but the improvement is asymptotic. To achieve further improvement we propose coupled strong classi-

fiers (CSCs) which consist of multiple strong classifiers connected in parallel. Complementarity between the

classifiers is considered for reducing intra- and inter-classifier correlations of exponential loss of weak classi-

fiers in the training phase, and dynamic programming is used during the testing phase to compute efficiently

the final object score for the coupled classifiers. In addition to CSC concept, we also propose using Aggregated

Channel Comparison Features (ACCFs) that take the difference of feature values of Aggregated Channel Fea-

tures (ACFs), enabling significant performance improvement. To show the effectiveness of our CSC concept,

we apply our algorithm to pedestrian detection. Experiments are conducted using four well-known bench-

mark datasets based on ACFs, ACCFs, and Locally Decorrelated Channel Features (LDCFs). The experimental

results show that our CSCs give better performance than the conventional single strong classifier for all cases

of ACFs, ACCFs, and LDCFs. Especially our CSCs combined with ACCFs improve the detection performance sig-

nificantly over ACF detector, and its performance is comparable to those of the state-of-the-art algorithms

while using the simple ACF-based features.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

AdaBoost is a backbone framework to reach top performance and

high speed in object detection, especially in pedestrian detection

[4,15]. A strong classifier in the AdaBoost framework consists of weak

classifiers connected sequentially. Usually the detection performance

of the strong classifier can be improved by employing more weak

classifiers, but its performance is asymptotic [13,23]. To improve

the performance further, one can use multiple strong classifiers that

are learned independently; in this case the relationship between the

classifiers is ignored, so their detection results can overlap: some

true positives missed by one classifier can be also missed by another

classifier. For additional improvement we propose coupled strong

classifiers (CSCs) to connect multiple strong classifiers in parallel.

To couple strong classifiers effectively, we introduce comple-

mentarity between the classifiers. Our CSCs consist of two kinds of

classifiers: independent and dependent. An independent classifier

is defined as the first classifier that is learned independently in the
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conventional way; the rest of the classifiers are dependent classi-

fiers, and are learned to be complementary to previously-learned

independent and dependent classifiers. Without the dependent

classifiers, our CSCs are equivalent to a conventional single strong

classifier in the AdaBoost framework. Based on the complementarity,

our independent and dependent classifiers of CSCs are coupled, and

an efficient method is used to compute the final object score for the

coupled classifiers.

The complementarity concept is not entirely new; it is related to

the diversity concept of ensemble learning [31]. However, the diver-

sity in ensembles is achieved by applying several strategies that use

different subsets of training data, different subsets of the available

features, different parameters of the classifier, or different weak clas-

sifiers. In contrast, our CSCs are naturally related to many variants

of AdaBoost [31] from the viewpoint of improving detection perfor-

mance of AdaBoost. However, most of them focus on design of weak

classifiers, on methods to select weak classifiers, or on methods to

update the training sample weights, where a single strong classifier

is assumed.

From the viewpoint of using multiple classifiers, our CSCs are

related to multi-models such as occlusion-specific models [21],

multiple object-scale (resolution-specific) models [2,3,29], and pose-

aware models [1]. However, the goal of the multi-models is to learn
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multiple classifiers each of which corresponds to a sub-category

that is defined explicitly or implicitly in a given object category,

whereas our goal is to design a classifier that is complementary to

the previously-learned classifiers and to devise a method to couple

those classifiers. In our framework each classifier of multi-models

can be considered as an independent classifier of our CSCs.

To show the effectiveness of our CSC concept, we apply our algo-

rithm to pedestrian detection. Pedestrian detection in natural scenes

is one of the most active research areas, but it is also a challenging

problem owing to the non-rigid properties of pedestrians, to their

variations of pose, and to the presence of multiple object scales,

occlusions, and cluttered backgrounds. For the last decade, many

algorithms [4,15,19] have been proposed to solve these problems, but

research continues.

Implementation of our CSCs is based on Aggregated Channel

Features (ACFs) [11] and Locally Decorrelated Channel Features (LD-

CFs) [22]. ACFs are one of the best features in terms of the detection

performance and feature computation speed, among the features

proposed so far including Haar-like features [27], HOG [7], HOG+LBP

[28], channel features [13,32], motion features/optical flow [8,24]

and covariance features [26]. Many recent features are also based

on ACFs, including spatially pooled features [23], combined features

[4], and LDCFs. The LDCF detector uses extended-channel features

obtained by applying an efficient feature transform that removes

local correlations in ACFs. It also shows state-of-the-art performance.

Based on the experimental results on top of ACFs and LDCFs, we can

expect improvement in detection performance of our CSCs when

using other features.

The main ideas of our CSCs are explained in Section 2. Experi-

mental results of pedestrian detection and implementation details

are given in Section 3. The paper concludes in Section 4.

2. Proposed algorithm

2.1. Training phase

Our CSCs consist of two kinds of classifiers, independent and de-

pendent classifiers. Before explaining these classifiers, we review

conventional AdaBoost briefly. In the AdaBoost framework the strong

classifier, HM, consisting of M weak classifiers takes the form

HM(x) =
M∑

m=1

βmhm(x), (1)

where βm and hm (m = 1, 2, . . . , M) represent the mth voting weight

and weak classifier respectively, and HM also represents an accumu-

lated object score from the first to the Mth weak classifier. The goal

of the conventional AdaBoost in the training phase is to minimize the

sum of certain losses of each training sample [5,20]. Given the pairs

of training samples and their labels, (xn, yn) (n = 1, 2, . . . , N), the ob-

jective function J is defined as

J =
N∑

n=1

L
(
yn, HM(xn)

)
, (2)

where L(·) represents some loss function. For each iteration in the

AdaBoost framework, optimal voting weight and weak classifier are

learned additively by minimizing the objective function in Eq. (2). In

the mth iteration, the objective function to find the mth voting weight

βm and weak classifier hm is defined as

J(βm, hm) =
N∑

n=1

L
(
yn, Hm(xn)

)

=
N∑

n=1

L
(
yn, Hm−1(xn) + βmhm(xn)

)
, (3)

where Hm = Hm−1 + βmhm and Hm−1 was learned in the (m − 1)th

iteration. If an exponential loss function is used, i.e., L(y, Hm(x)) =
exp ( − yHm(x)), then the objective function in Eq. (3) can be written

as

J(βm, hm) =
N∑

n=1

exp

(
− yn

(
Hm−1(xn) + βmhm(xn)

))

=
N∑

n=1

L
(
yn, Hm−1(xn)

)
L
(
yn, βmhm(xn)

)
. (4)

Therefore the objective function in Eq. (4) can be regarded as a cor-

relation function over the training samples between the exponential

loss L(y, Hm−1) by Hm−1 and the exponential loss L(y, βmhm) by βmhm.

This correlation can be interpreted as intra-classifier correlation, be-

cause βmhm and Hm−1 belong to the same strong classifier. There-

fore the independent classifier of our CSCs is learned by minimizing

the intra-classifier correlation over the training samples. To learn the

dependent classifier we expand this correlation, from intra-classifier

correlation to inter-classifier correlation.

First, we consider the case of CSCs using one independent and one

dependent classifiers. If we define the objective function of β i
m and

hi
m for the independent classifier as

J
(
β i

m, hi
m(x)

)
=

N∑
n=1

L
(
yn, Hi

m−1(xn)
)
L
(
yn, β i

mhi
m(xn)

)
, (5)

then the update equation of the training sample weights [5,20] is

given by

wi
m+1,n = exp

(
− ynHi

m(xn)
)
. (6)

Extending this to the intra-classifier and the inter-classifier correla-

tions, the objective function of βd
m and hd

m for the dependent classifier

can be defined as

J
(
βd

m, hd
m(x)

)
=

N∑
n=1

L
(
yn, Hd

m−1(xn)
)
L
(
yn, βd

mhd
m(xn)

)

+λ
N∑

n=1

L
(
yn, Hi

m−1(xn)
)
L
(
yn, βd

mhd
m(xn)

)
, (7)

where the first term corresponds to the intra-classifier correlation

for the dependent classifier, the second term is the inter-classifier

correlation between the independent and the dependent classifiers,

and λ is a weighting parameter on the inter-classifier correlation. Us-

ing the objective function in Eq. (7), the optimal weak classifier of

the dependent classifier is selected to minimize the intra-classifier

and the inter-classifier correlations simultaneously. If λ = ∞, only

inter-classifier correlation is considered, so the optimal weak clas-

sifier is learned by the same objective function as the independent

classifier, regardless of its own dependent classifier. If λ = 0, only

intra-classifier correlation is considered, so the dependent classifier

is learned regardless of the independent classifier. The dependent

classifier learned in this way is equivalent to the strong classifier

learned independently.

The update equation of the training sample weights for the ob-

jective function of the dependent classifier in Eq. (7) is just simple

modification given by

wd
m+1,n = exp

(
− ynHd

m(xn)
)

+ λ exp
(

− ynHi
m(xn)

)
, (8)

where the first term is from the intra-classifier correlation and the

second is from the inter-classifier correlation. In fact the optimal

weak classifier is selected to minimize the sum of classification er-

rors of the training samples weighted by the training sample weights.

The arrows in Fig. 1a represent update flows of the training sample

weights. The weights for the independent classifier are updated along

the conventional flows corresponding to Eq. (6), whereas the weights
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