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a b s t r a c t

Graph-based spectral clustering algorithms involve the analysis of an affinity matrix. The latter defines the

pairwise similarity relations among data points. Popular graph partitioning algorithms typically involve a

normalization step that reflects itself onto an affinity matrix normalization step in spectral clustering algo-

rithms. In this paper, we show that affinity matrix normalization with constant row/column sum guarantees

the invariance of the size-weighted sum of the between- and within-cluster graph association; a property

conceptually equivalent to the data variance decomposition exploited by the standard k-means algorithm.

From this observation, we demonstrate that the solution of numerous spectral clustering methods can be ob-

tained using the standard graph ratio cut objective function. We have identified in the literature 7 such affinity

matrix normalization schemes relevant to spectral clustering. Clustering experiments performed with these

7 normalization schemes on 17 benchmark datasets are presented. As a general rule, it is observed that the

appropriate normalization method depends on the dataset. A geometric interpretation in the feature space

(FS) of such a normalization scheme for k-way spectral clustering is also presented.

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Maximizing the within-cluster similarities while simultaneously

minimizing the between-cluster similarities is an approach playing

a key role in several popular unsupervised clustering algorithms.

For example, minimizing the within-cluster scatter at the base of

the well-known k-means algorithm is equivalent to maximizing the

between-cluster scatter because the within/between scatter sum

is an invariant, irrespective of how data are partitioned [10]. The

same property, hereafter referred to as minimum/maximum dual-

ity optimization, applies for kernel k-means [13]. Yet, an analogous

minimum/maximum duality exists for the minimum cut and the nor-

malized cut (Ncut) graph partitioning algorithms: both techniques

minimize the between-cluster similarities while simultaneously

maximizing the within-cluster similarities [22]. Recently, Dhillon

et al. [5] introduced a general weighted graph cuts/association for-

malism incorporating existing graph partitioning algorithms that are

based on different cut-normalizing terms (e.g. ratio cut, ratio associ-

ation, normalized cut). Their study reveals the equivalence between

the objective function of spectral clustering and kernel k-means.

Spectral clustering algorithms for graph partitioning have shown

good performance to solve graph partitioning problems [12]. In par-

ticular, Dhillon et al. [5] showed that maximizing a general weighted

graph association is equivalent to minimizing a general weighted
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graph cut on some specific matrices comprising the affinity matrix,

its graph Laplacian and the matrix of general weights (more details in

Section 3). The latter reflects again a minimum/maximum duality

optimization criterion for clustering.

From a different perspective, Zass and Shashua [23] demonstrated

that the solution of kernel k-means objective function is optimized

when the input affinity matrix1 is doubly stochastic, that is each row

and column of the input affinity matrix is normalized to sum to one.

An affinity matrix provides a measure of the degree of similarity be-

tween every pair of points in a dataset. Affinity matrix normaliza-

tion is defined in this paper as operations applied on the affinity ma-

trix and transforming it into a matrix with constant sum for rows

or columns or both of them. Zass and Shashua [23] noticed that the

ratio cut and normalized cut algorithms, although not using doubly

stochastic matrices, employ the closest doubly stochastic matrix to a

given input affinity matrix according to some error measures (�1 for

ratio cut and relative entropy for normalized cut). The closest doubly

stochastic matrix must be non-negative and symmetric. Both ratio

and normalized cut involve thus an implicit normalization step (see

also Table 1, [3]). From these observations, Zass and Shashua argued

that a doubly stochastic approximation of the input affinity matrix

should be pursued for spectral clustering. Following that reasoning,

they proposed the construction of a doubly stochastic (normalized)

affinity matrix based on the Frobenius error norm. In a similar way,

Wang et al. [20] showed that using the Kullback–Leibler divergence

1 In this paper, we use the terms affinity and similarity matrix interchangeably.
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Table 1

Normalization schemes resulting in constant row/column sum when applied on a given affinity matrix U.

Normalization operations applied on U Row/col. sums U1, UT1 References

UL = L = D − U 0 Hagen and Kahng [9]

UZJ = [I − D−1U]T [ − D−1U] 0 Zhang and Jordan [24]

URR = U − U11T U
1T U1

0 Rahimi and Recht [16]

UFP_mod = [I − t−1U′]T [I − t−1U′] ,

where [U′]ij = exp[−(xi − xj)
2/(2σ i

2)] and ∀i:∑
j∈C

U ′
it = τ , τ − > − 0; σ i chosen such that each row sum = τ

0 Modified from Fischer and Poland [6]

ULs_iter, iterates U(t+1) = [D−1/2U(t)D−1/2] lim
t→∞

U(t) = 1 Zass and Shashua [23], Ng et al. [15]

UZSW, iterates U(t+1) = [U(t) + N−1(I − U(t) + N−111TU(t) )11T − N−111TU(t)]+ lim
t→∞

U(t) = 1 Zass and Shashua [23], Wang et al. [20]

USK, iterates U(t+1) = [(Ui j/
∑

i

Ui j)
(t) ← (Ui j/

∑
j

Ui j)
(t)

] lim
t→∞

U(t) = 11 Sinkhorn and Knopp [18]

Table 2

Summary of the datasets used for the experi-

ments. k = number of groups, N = number of

samples, and d = number of features with the

reduced dimension in brackets.

Dataset k N d (dPCA)

Iris 3 150 4

Wine 3 178 13

Crabs 2 200 5

Sonar 2 208 60

Glass 6 214 9

House 2 232 16

Spectf_Heart 2 267 44

Ionoshere 2 351 34

Std-yeast 5 384 17

Balance 3 625 4

Pima 2 768 8

OptDigits 10 1000 64

Cancer 2 683 9

Dermatology 6 358 34

Coil20 20 1440 1024 (6)

Leukemia 2 72 7129 (6)

ZipCode5-9 5 3051 256 (6)

to approximate the affinity matrix lead to the Sinkhorn and Knopp al-

gorithm for doubly stochastic affinity matrix normalization [18]. Yet,

implicit normalization schemes for spectral clustering also exist in

algorithms such as the average gap algorithm [16] or the use of an

alternative choice for the unnomalized graph Laplacian in ratio cut

[24]. The latter two approaches result in a normalization of the input

affinity matrix where the row/column sums are equal to zero. The

third column of Table 1 provides a list of works involving affinity ma-

trix normalization with constant row/column sums.

This brief survey shows that the normalization of affinity matrices

leading to constant row/column sums plays a central role in the so-

lution of numerous graph clustering algorithms. Notice that the lack

of normalization generally leads to inferior clustering performances

(see, e.g., Tables 2 and 3 of [21]. The fact that there exist connec-

tions between the weighted versions of graph clustering and kernel

k-means objective functions suggested us to examine the role of affin-

ity matrix normalization from the minimum/maximum duality opti-

mization property perspective.

In this paper, we revisit the minimum/maximum duality opti-

mization property in graph clustering, focusing on the constraints re-

quired for affinity matrices to preserve the invariance of within- and

between-cluster similarities sum.

The main contributions are, in order of presentation: (i) we es-

tablish a relationship with invariant property regarding cluster’s data

assignment for graph partition algorithms, conceptually equivalent to

the data variance decomposition exploited by the standard k-means

algorithm; the relationship holds under the condition that the affin-

ity matrix is normalized in such a way that the sum of each row and

each column is equal to a same constant, (ii) we show that the solu-

tion of numerous spectral clustering methods can be obtained using

the standard graph ratio cut objective function for such normalized

affinity matrices, (iii) we propose a modified version of the Fisher and

Poland [6] affinity matrix construction method that significantly im-

proves clustering performance over the original formulation, and (iv)

we provide a geometric interpretation in the feature space of such a

normalization scheme for k-way spectral clustering.

The paper is organized as follows. Relevant material from graph

partitioning, spectral clustering and kernel k-means is reviewed in

Section 2. The main relationships and their significances are derived

in Section 3. The feature space interpretation is detailed in Section 4.

Section 5 presents and discusses experimental results illustrating the

findings of the previous sections. The conclusion is given in Section 6.

2. Preliminaries

In this section, we introduce the notation and basics of relevant al-

gorithms considered in this work: graph partitioning, affinity matrix,

spectral clustering, affinity matrix normalization and kernel k-means.

2.1. Graph partitioning

Consider a dataset X = {x1,…, xN} where xi is a vector in a d-

dimensional space. Let G = (V, E, U) be an undirected weighted graph

where V = {V1,…, VN} is the set of all nodes (or vertices) correspond-

ing to individual data xi and E is the set of edges connecting all pairs

of nodes (Vi, Vj). The affinity matrix U = [Uij]N×N, Uij ≥ 0, is a mea-

sure of the edge weights: it is a matrix quantifying the similarity be-

tween points xi, xj. Many ways exist for constructing pairwise sim-

ilarities from a set of data points. The most common ones include

ε-neighborhood graph, k-nearest neighbor graph and similarity func-

tions [19]. Co-association matrices constructed from the combination

of multiple partitioning algorithms, e.g. Fred and Jain [7], also possess

affinity matrix properties.

The clustering problem consists in partitioning V into K disjoints

subsets Vi, i = 1,…, K, with V = ⋃K
i=1 Vi and Vi ∩ Vj = ∅ for i �= j, so

that the similarity among the nodes in each individual set is high

and the similarity between the different subsets is low. Consider

first the bipartite case, k = 2, and denote two disjoint sets A and

B with A ∪ B = V and A ∩ B = ∅. The total weighted connection be-

tween the two sets is computed from the similarities encoded in the

affinity matrix U and is defined as links(A, B) = ∑
i∈A

∑
j∈B

Ui j . It is easy

to prove that the following identity holds true: links (A, V) = links

(A, B) + links (A, A). Two measures of importance in graph parti-

tioning are the cut, cut(A, B) = links(A, B) = ∑
i∈A

∑
j∈B

Ui j , and the asso-

ciation, assoc(A, X) = links(A, X) = ∑
i∈A

∑
j∈X

Ui j where X stands for A,

B or V. The graph cut is the central measure in graph partitioning

problems. It represents the sum of the edge weights coming from
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