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a b s t r a c t

Image set classification has attracted increasing attention in recent years. How to effectively represent im-

age sets is one key issue of set based classification. Subspaces form non-Euclidean Riemannian manifolds

known as Grassmann manifolds, which allows an image set to be conveniently represented as a point on a

Grassmann manifold is widely used in many visual classification tasks. Another issue is how to measure the

distance/similarity between sets. Modeling image sets as hulls, and then finding distance of nearest points

between sets as the set-to-set distance is a popular solution recently. In this paper, we propose a novel ap-

proach by exploiting the Projection kernel that explicitly maps the subspaces from the Grassmann manifold

to a Reproducing Kernel Hilbert Space (RKHS) where the Euclidean geometry applies. And then, by modeling

the points on RKHS as affine hulls, the Euclidean distance between the nearest points of two hulls can be used

for classification. In order to obtain enough points for building the Grassmann affine hulls, we also develop a

subspaces constructing method extended by K-means. Experiments are conducted on six datasets. Our pro-

posed method achieves the best classification results on two multi-view object categorization datasets and

one extreme illumination variation face recognition dataset.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid developments of internet and video surveillance,

collecting image sets from video sequences or photo albums is

easier, and has many resources. Image set classification in com-

puter vision and pattern recognition has received growing attention

[1,4,12,13,17,28–30,32,34,37,38] in recent years. Meanwhile, set based

classification has shown superior performance than the single in-

stance based classification approaches in the same conditions, since

it provides much more within-set information. The wide range appli-

cations of image set classification include object categorization, face

recognition, action [9,25] recognition, gesture recognition [2] and

texture categorization [10,15], etc.. In this paper we specifically fo-

cus on the object categorization and face recognition tasks. Many ap-

proaches [1,7,30] have been successfully applied on image set based

object categorization and face recognition. However, due to the low

resolution and large variations of viewpoint and illumination, these

tasks are still challenging for classification based on image sets.
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The key issues of image set based classification are how to rep-

resent image sets and how to measure the distance/similarity be-

tween sets [13]. Generally speaking, addressing the problem of im-

age set classification can be classified into two types, parametric

and nonparametric methods. Parametric methods [20,24] model each

image set as a parametric distribution and measure the similarity

between two distributions. The nonparametric methods have been

shown to be superior to parametric methods when the data distri-

butions do not satisfy the models estimated by the parametric meth-

ods. A serial of nonparametric methods have been proposed for set

based classification. The linear subspace based methods [34,4] model

image sets as linear subspaces, and then exploit the principal an-

gles to measure the similarity of two linear subspaces. Kim et al.

[17] finds the most discriminative canonical correlation between sets

through a linear transformation. Since the visual features and mod-

els often lie on non-Euclidean spaces, manifold methods are also

very popular in image set classification. The method in [28] repre-

sents image set as multiple local linear subspaces and treats them as

points on manifold, and then defines manifold-to-manifold distance

for sets matching. Manifold Discriminant Analysis (MDA) [29] is pro-

posed to learn an embedding space by maximizing manifold margin.

Sparse Approximated Nearest Subspaces (SANS) [2] extracts local lin-

ear subspaces from gallery image sets via sparse representation, and

then adaptively finds the corresponding closest subspace from the
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samples of a probe image set by joint sparse representation; the dis-

tance between subspaces over Grassmann manifolds is defined by

the Frobenius norm distance. Recent studies have shown that bet-

ter performance can be achieved when the geometry of Riemannian

space is explicitly considered [7,9,15,30,26]. In [7] and [31], Grass-

man kernels are used to map the subspaces to Reproducing Kernel

Hilbert Spaces (RKHS) where Euclidean geometry applies, classifica-

tion is achieved with the Kernel Linear Discriminant Analysis (KLDA).

A similar method [8] uses a graph embedding discriminant analysis

to generalize the method of [7]. Symmetric Positive Definite (SPD)

matrices which lie on Riemannian manifolds [19] are also used for

image set classification. In [30] and [15], covariance matrices are em-

ployed to represent image sets, and then they are mapped to a high

dimensional Hilbert space, so that, such as Support Vector Machine

(SVM), Kernel Principal Component Analysis (KPCA) and KLDA can be

adopted for classification. However, the SPD matrices based meth-

ods often suffer from the curse of dimensionality and computational

complexity [38].

The nonparametric methods mentioned above are more attentive

on the representation of image sets, another serial of nonparamet-

ric approaches which concentrate more on how to measure the dis-

tance between sets are the hull based methods. Affine/Convex Hull

based Image Set Distance (AHISD/CHISD) [1] represents images as

points in a linear or affine feature space, and then computes the dis-

tance of convex geometric region spanned by its feature points. Hu

et al. [13] propose Sparse Approximated Nearest Points (SANP), which

sparse representation is applied to regularize the affine hull model.

The Regularized Nearest Points (RNP) [35] is proposed to reduce the

model complexity of SANP. After that, Wu et al. [33] and Zhu et al.

[38] propose methods by employing the collaborative representation

technique to utilize the discrimination information between gallery

sets, which further improve the performances. These approaches ac-

tually aim to find the synthetic nearest points between image sets.

However, sometimes the synthetic nearest points between two sets

estimated by the affine combination of the existing samples are

not consistently meaningful [23]. Furthermore, complex appearance

variations caused by multiple views and extreme illumination often

generate nonlinearity [22]. Although the kernel trick with Gaussian

kernel has been exploited to handle the nonlinearity, such as the ker-

nel version of AHISD [1], kernel SANP [14] and the Kernelized Convex

Hull based Image Set Collaborative Representation and Classification

(KCH-ISCRC) [38], but as we can see in the experiments of these lit-

erature studies, the improvements are limited. Very recently, a novel

deep learning framework for image set classification has been pro-

posed [11,12]. However, deep learning often casts great demand to

the computation. And their work is not robust to noisy image data,

outliers and diverse within-set data variations.

In order to solve the problems mentioned above, as the visual

data often lies on the non-Euclidean space and inspired by the kernel

AHISD. In this work, we proposed a novel approach called Grassmann

Nearest Points (GNP) for a solution. We first develop the K-means

clustering method to cluster each image set into multiple overlapped

local patches, each patch can be modeled as a linear subspace which

is a point on a Grassmann manifold. And then, these subspaces are

mapped to an RKHS by Grassmann kernel, where many algorithms on

Euclidean spaces can be directly generalized. After that, we find the

distance between nearest points of two sets on the mapped space by

the affine hull model. These can be technically achieved by the kernel

trick with Grassmann kernel. The proposed GNP is to the best of our

knowledge the first one that uses the kernel affine hull model with

Grassmann kernel to deal with image set classification. Experiments

are conducted on two multi-view object categorization datasets and

four face recognition datasets. The experimental results show that the

proposed GNP gives notable performances on solving the multi-view

and extreme illumination variation problems comparing to several

state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we

briefly introduce the Grassmann manifold and how to construct sub-

spaces in one image set. Section 3 reviews the affine hull model and

presents our proposed Grassmann nearest points method. Experi-

mental results are presented in Section 4. Section 5 concludes this

paper.

2. Modeling image sets on Grassmann manifold

This section we introduce the Grassmann manifold and Grass-

mann kernels. Following that, our subspaces construction method is

presented.

2.1. Grassmann manifold

Manifold analysis has been extensively studied with success in

wide range of research. Manifold can be considered as topological

space that is locally similar to Euclidean space and has a globally de-

fined differential structure. Meanwhile, manifold can be embedded in

a higher dimensional reproducing kernel Hilbert space, where many

Euclidean algorithms can be generalized [15]. Grassmann manifold

is a Riemannian manifold that embedded in a higher dimensional

RKHS, and it’s formed by subspaces. In this paper, we specially focus

on this type of manifolds.

Given a set of m-dimensional linear subspaces of R
D and the

Grassmann manifold GD,m. An element of GD,m can be represented by

a linear subspace that spanned by an orthonormal matrix Yi with the

size of D × m, which is span(Yi). Then, the Riemannian distance be-

tween two subspaces on Grassmann manifold can be defined, such

as the Projection metric and Binet-Cauchy metric [7] which are based

on the principal angles. Due to the specific geometric properties of

Grassmann space, Grassmann manifold can be mapped to an RKHS

by using Grassmann kernels which obey Mercer’s theorem. Let the

kernel function k : G × G → R be a symmetric real-valued function,

where k is a Grassmann kernel if and only if it satisfies the positive

definiteness and being well-defined [7]. Various Grassmann kernels

have been successfully applied for computer vision tasks [7,8]. In this

work, we are interested in the Projection kernel, which is generalized

by the Projection metric. The Projection kernel has achieved consis-

tent and promising results in literature [7–9]. The Projection kernel is

given by:

kP(Y1, Y2) =
∥∥YT

1Y2

∥∥2

F
(1)

Where ‖ � ‖F denotes the Frobenius norm, Y1 and Y2 are two or-

thonormal matrices with the same size D × m.

2.2. Construction of subspaces on an image set

In many challenging visual classification scenes, there is only one

image set in each class for gallery or training set. However, for many

classification tasks, such as the discriminant analysis methods, they

need at least two training objects (or sets) for discriminative learn-

ing. One convenient way to solve this problem is by dividing the one

image set into several subsets. As mentioned previously, Grassmann

manifolds take linear subspaces as points on non-Euclidean spaces.

Since the linear subspaces are able to accommodate the effects of

complex data variations [9,30], modeling image sets as linear sub-

spaces have been proven to be beneficial for many visual classifica-

tion tasks.

In this work, different from the method in [7] which models each

image set as one linear subspace, we model an image set as multi-

ple subspaces by a simple set dividing method which extended by

K-means clustering. Modeling an image set as multiple subspaces has

been previously proposed, such as [28,29]. They use two similar types

of Maximal Linear Patch (MLP) algorithms respectively to cluster an

image set into several non-overlapped local patches, and then extract
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