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It is important and necessary to take account of the non-zero pattern in image sparsity representation. In this

paper, we present an image restoration model by introducing a novel edge-continuous overlapping group

sparsity regularizer (EC-OGS), based on our observation that the non-zero entries in an image gradient do-

main often distribute along its edges. The model is solved by the ADMM (alternating direction method of

multipliers), where a fast novel algorithm is proposed for computing the proximal operator in solving the

subproblem with EC-OGS regularizer. The proposed model can be applied to various image restoration tasks

including denoising, deblurring, and edge-detecting. The numerical experiments demonstrate the effective-

ness of our method in terms of PSNR, visual effect and edge preserving.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image restoration is an important task in the field of image

processing and usually formulated as a linear inverse problem. The

objective of image restoration is to estimate an image u from an

observed image f ∈ Rd by the following minimization problem:

min
u

1

2
‖Hu − f‖2

2 + λφ(u) (1)

where φ(u) is a regularization term, H is a linear operator which

is typically an identity operator in image denoising, a projection

operator in image inpainting or a blurring operator in image de-

blurring. The most two important subjects of this model are about

how to design a regularizer φ(u) effectively and how to find good

computation methods for the model. The regularizer is usually with

some kinds of assumptions, such as the solution having the feature

of sparsity or group sparsity. In the field of sparse representation, l1
norm usually acts as the relaxed convex regularizer for l0 which is

exactly the norm for sparse coding. In recent years, sparsity-based

approaches have led to promising results for various image restora-

tion problems. The sparsity-based regularization problems can be

classified into the following two kinds: the first one assumes that the

unknown image u has the nature of sparse representation and can be

synthesized by a few atoms in a given dictionary φ(synthesis-based

sparsity problems), while the second one assumes that the analysis

coefficients Du(D is the analysis operator) in the analysis domains
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are sparse (analysis-based sparsity problems). They can be modeled

as minu
1
2 ‖Hφα − f‖2

2 + λ‖α‖1 and minu
1
2 ‖Hu − f‖2

2 + λ‖Du‖1

respectively. Elad and Aharon [17] proposed K-SVD algorithm for

learning a dictionary for image sparse representations. Nonlocal-

patches based sparse representation approaches [1,25,29,30,43] have

made a great success in the field of image restoration. [1,29,30] pro-

posed BM3D algorithm for image denoising based on an enhanced

sparse representation in transform domain. Dong and Zhang [43]

proposed a nonlocally centralized sparse representation (NCSR)

model to improve the performance of sparse representation-based

image restoration by suppressing the sparse coding noise. Mairal

et al., [25] present simultaneous sparse coding as a framework by

two approaches, namely exploiting self-similarities and learning

dictionary. Dong et al., [42] incorporate the image nonlocal self-

similarity into sparse representation for image interpolation. These

methods are mostly classified into the synthesis-based sparsity

problems. In this paper, we pay more attention to the analysis-based

sparsity problems in image gradient domain. We give a review about

analysis-based approaches as following.

A definition of φ(u) as a l2-type norm named Tikhonov regular-

izer (φ(u) = ‖∇u‖2,∇ is the gradient operator) was proposed by

Tikhonov [40]. Although it has the virtue of simple computation,

the regularizer overly smoothes the edges which are very important

features in the natural images. To overcome smearing edges, a regu-

larizer based on total variation (TV) was proposed in [38] (in which

φ(u) =
√∇u2

x + ∇u2
y , the regularizer often called the isotropical TV

regularizer). The well-known model by this regularizer is called the

ROF model. Esedoglu and Osher [18] also proposed the anisotropical

ROF model where φ(u) = ‖∇ux‖1 + ‖∇uy‖1. A remarkable advan-

tage of TV regularizer is good edge-protecting. Due to this, it is
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widely used in different applications of image processing, such as

blind deconvolution, inpainting and superresolution; see [13] for an

overview. Many algorithms have been proposed for solving the ROF

model. A semi-implicit gradient descent algorithm [8] is proposed

by studying a dual formulation of TV denoising problem. Goldstein

and Osher [21] also proposed a fast and stable method named the

split Bregman algorithm. Introducing an auxiliary variable to replace

f, another Fast TV method is proposed in [24]. In [6], a fast iterative

shrinkage–thresholding algorithm (FISTA) for the ROF problem is

studied. Afonso et al. [3] proposed an augmented Lagrangian shrink-

age algorithm (SALSA) according to the alternating direction method

of multipliers (ADMM). More recently, an effective method [9] is

proposed by imposing a step of box constraints on the ROF model.

Although the TV regularizer has been proven to be extremely ef-

fective in various image processing applications, it often develops

false edges which resulting in staircase artifacts [11]. Besides, as the

numerical example (Fig. 2) in [12], the TV regularizer prefers round

corners. Hence, TV-based methods do not preserve the structure, de-

tails, corners and textures of an image well. To overcome this short-

coming, high-order total variation regularizers like second-order [31]

and fourth-order [35] partial differential operators were considered

to avoid merely piecewise constant regions. To protect edges and fine

details, Chao and Tsai [14] proposed a diffusion model incorporates

local gradient and gray-level variance. Besides, a nonlocal TV regu-

larizer [46] and a reweighted nonlocal TV regularizer [41] both based

on patch-similarity was also proposed to avoid staircase artifacts. Ac-

tually, other different types of regularizers, such as the frame-based

l1 regularizer [7] and the Mumford–Shad regularizer [37] have been

proven useful to image processing. As a kind of l2-based regularizer,

Mumford–Shad regularizer (φ(u) = ‖∇u‖2
2
) forces the edges to be

smooth but does not force spatial coherence such as edge direction

compatibility or edge connectivity. Unlike the TV regularizer, frame-

based l1 regularizer [7] is considered in a tight frame domain instead

of gradient domain. Investigating the reason for the staircase artifacts

and round corners by the ROF model from the view of sparsity, it is

probable that the l1 norm in the ROF model does not embody the rela-

tionship between those non-zero entries of the spare solution well. In

other words, those non-zero entries are almost independent of each

other. There are some examples for showing the shortcomings of l1
norm. In the field of face recognition, robustness of occlusions will

be improved by considering as features or sets of pixels that form

small regions in face images [28]. However, the l1-norm regularizer

fails to encode this special constraint. Extracting bounding boxes is

necessary in the task of object and scene recognition and these boxes

should to be extracted by respecting the distribution of the pixels in

the images, therefore, an unstructured regularizer like l1-norm may

not be suitable. Similarly, in neuroimaging area, the fMRI (functional

magnetic resonance imaging) interests in localizing areas and should

construct the brain in three-dimensional space [2,22,44], so the vox-

els should have a special localized spatial organization. But the opti-

mization problem regularized by the l1-norm will ignore the spatial

configuration and will not obtain good results.

To further improve the solutions and avoid the shortcomings dis-

cussed above, more recent studies suggested to take the underly-

ing structure of solutions into account while using sparsity coding

methods [16,23,26]. A series of solutions with special group sparsity

structure have been proposed in [16,23,26,36]. Recently, OGS (over-

lapping group sparsity) has been considered for image or signal pro-

cessing, see [4,5,15,16,19,27,32–34,39]. Liu et al. [34] set φ(u) in (1) to

be the OGS-TV (overlapping group sparsity total variation) and pro-

posed an image restoration model, which was resolved by ADMM

framework which includes majorization-minimization (MM, [20]) as

an important step. However, the algorithm is slow because the MM

method needs an inner iteration. Liu et al. [33] proposed a new ex-

plicit thresholding/shrinkage formula for one class of regularization

problem with the OGS-TV. Because the OGS-TV is defined as the sum

of l2-norms of all square K ∗ K-point groups in the gradient domain,

the solutions obtained by the OGS-TV unfortunately have no any spe-

cific distribution of non-zero entries.

Based on the analysis for the l1-norm regularizer and the OGS-TV

regularizer, in this work we focus on modeling the distribution of the

non-zero entries in image gradient domain. It is known that edges

are always continuous curves on which the gradients are non-zeroes.

Based on this observation, we firstly design special atomic vectors,

each with a support set of k continuous points along a straight line

in gradient domain. Then a new regularizer minimizing the sum of

l2-norms of these atomic vectors is proposed for image restoration

problems. An image restoration model by this new regularizer is pre-

sented and solved by ADMM, which can produce better restored im-

ages than relevant methods. The main contributions of this paper are

as follows: First, a novel regularizer named EC-OGS (Edge-continuous

overlapping group sparsity) is proposed for image processing; Sec-

ond, we propose a novel algorithm for computing the proximal opera-

tor of the optimization subproblem with the new regularizer EC-OGS.

The rest of this paper is organized as follows. In Section 2, we

propose our edge-continuous overlapping group sparsity regularizer

in the gradient domain and the relevant image restoration model.

In Section 3, under the ADMM frame, we proposed an optimization

algorithm for this model. A fast novel method for computing the

proximal operator of the subproblem with EC-OGS is proposed in

Section 4. In Section 5, to demonstrate the effectiveness and advan-

tage of our method over existing methods, we give a number of nu-

merical experiments on various image restoration tasks including im-

age denoising, deblurring, and edge-detecting. Finally, we conclude

with a discussion on the proposed regularizer and point out some fu-

ture research directions.

2. Edge-continuous overlapping group sparsity regularizer and

image restoration model

As we all know, edges of an image are commonly some continuous

curves, on which the gradient magnitudes are generally non-zeros in

the image gradient domain. Based on this observation, atomic vec-

tors with the support set of k continuous points at most along a

straight line in gradient domain are designed in this paper. We pro-

posed a regularizer in gradient domains by minimizing the sum of the

l2 norms of these atomic vectors. For an M ∗ N image, we partition its

gradient into 4kd vectors, where d = MN. In particular, let z ∈ Rd be a

gradient, and we decompose it into

z = 1

k

M∑
i=1

N∑
j=1

4k∑
p=1

zp(i, j)

where, zp(i, j) ∈ Rd is a sparse vector satisfying ‖zp(i, j)‖0 ≤ k and

its support forms a straight line containing (i, j) along directions of

angle multiples of π /4. Fig. 1(a) and (b) shows the 4k overlapped

support sets on point (i, j) when k = 3 and k = 2 respectively, named

G1, G2, . . . , G4k. In Fig. 1(a), there are 12 support sets. Each along one

direction and includes three continuous points. For example, G1 in-

cludes {(i, j − 1), (i, j), (i, j + 1)} along horizontal direction and G6

includes {(i, j), (i + 1, j − 1), (i + 2, j − 2)} along diagonal direction

from top-right to bottom-left. We denote the relevant vectors cor-

responding to those support sets G1, G2, . . . , G4k, k = 3 or k = 2 in

Fig. 1 as zp(i, j), p = 1, 2, . . . , 4k.

Considering the ∇ux or ∇uy of an image as a vector concate-

nated by its all columns, the pattern of each vector zp(i, j) ∈ Rd, p =
1, 2, . . . , 4k is organized as the following formula:

zp(i, j) =
d=MN︷ ︸︸ ︷

(0, . . . , zp1 , 0, . . . , zp2 , 0, . . . , zpk , . . . ) (2)

where, support(zp(i, j)) = (p1, p2, . . . , pk) = indexes(Gp). That

means the non-zero indexes p1, p2, . . . , pk of the vector zp(i, j) is
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