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a b s t r a c t

The implementation of autonomous intervention tasks with underwater vehicles is a non-trivial issue due to

the challenging and dynamic conditions of the underwater medium (e.g., water current perturbations, water

visibility). Likewise, it requires a significant programming effort each time that the vehicle must perform a

different manipulation operation. In this paper we propose, instead, to use a cognitive system that learns the

intervention task from an expert operator through an intuitive learning by demonstration (LbD) algorithm.

Taking as an input few operator demonstrations, the algorithm generalizes the task knowledge into a model

and is able to control the vehicle and the manipulator simultaneously to reproduce the task, thus conferring

a more adaptive behavior in front of the environment changes and allowing to easily transfer the knowledge

of new tasks. A cognitive architecture has been implemented in order to integrate the LbD algorithm with the

onboard sensors and actuators and to allow its interplay with the vehicle perception, control and navigation

modules. To validate the full framework we present real experiments in a water tank using an AUV equipped

with a four DoF manipulator. A human operator teaches the system to perform a valve turning intervention

and we analyze the results of multiple task reproductions, including cases under the effect of water current

perturbations, showing the success of the system in autonomously reproducing the task.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cognitive systems hold the promise for changing future human–

machine interactions through integrated systems that are able to

perceive, understand, learn and develop in their environment [26].

Knowledge representation, and particularly how this knowledge is

transferred between humans and machines becomes therefore a

topic of utmost importance for cognitive systems. A common option

to represent and transfer knowledge is the combination of natural

language processing with machine learning techniques [9]. However,

if we wish to transfer the ability to perform a task or a skill to a ma-

chine, natural language might become too intricate, while providing

the machine with an example of the task itself can be a much more

straightforward way to convey the associated knowledge. For these

cases, learning by demonstration (LbD) algorithms [2] offer a natural

solution for transferring the knowledge of a new skill to a system by

extracting it from a set of expert demonstrations. Opposite to other

demonstration-based systems, where the robot learns to accomplish

a task by naively recording predefined paths or trajectories and repro-

ducing them later, LbD extracts the knowledge embedded in multiple
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demonstration trajectories and generalizes them into a representa-

tive model of the task, that is later used to generate reproductions.

The main advantage of this paradigm is that it confers a more adap-

tive behavior in front of environment changes in addition to increase

flexibility and scalability as the system can learn new tasks without

requiring additional programming. Hence, learning by demonstration

can be an intuitive and effective way to build a cognitive model and

develop a cognitive system that can perceive, learn and actuate on its

environment in an autonomous way.

While these kind of algorithms have been applied in teaching

some tasks to robotic manipulators [3], our aim in this paper is to

apply an LbD technique to an autonomous underwater vehicle (AUV)

to enable it to learn, intuitively, a sub-sea intervention task. Under-

water manipulation operations are often required, for instance in the

maintenance of permanent sub-sea observatories, deployment and

recovery of benthic stations, or in the inspection, repair and main-

tenance of submerged infrastructures of the offshore industry. These

sort of intervention tasks are nowadays carried out using remotely

operated vehicles (ROVs), that require expensive support vessels and

dedicated crew and operators. In this sense, performing them au-

tonomously with an AUV endowed with a manipulator (the so-called

Intervention-AUVs (I-AUVs)) would convey significant advantages

in terms of operational time and costs. The implementation of au-

tonomous intervention tasks with these vehicles is a non-trivial issue

due to the challenging and dynamic conditions of the underwater
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medium: water perturbations (i.e., current, waves), reduced visibil-

ity, difficulties in understanding the scene, and a high degree of un-

certainty in navigation and perception sensors. Likewise, it requires

a significant programming effort each time that the vehicle must

perform a different manipulation operation. For those reasons, we

believe that approaching the problem using a LbD algorithm can con-

tribute to advance the state of the art of autonomous underwater

intervention.

It is worth noting that in the last years some research projects

have begun to demonstrate autonomous intervention capabilities al-

though none of them has used machine learning techniques but

classical manipulation theory. The SAUVIM project [16] proposed an

underwater intervention using a priority order controller for the ma-

nipulator to recover objects of the seafloor. In the TRIDENT project

[21] a system to search and recover objects with a light I-AUV was

presented. The I-AUV implements an underwater vehicle manipula-

tor schema (UVMS) which is guided by a visual system to grasp the

object. The TRITON project [8,19] shows some manipulation with an

I-AUV docked in a sub-sea panel. The manipulation is guided to follow

a trajectory composed by several points generated from the visual de-

tection of the valve. The work presented here is in the context of the

PANDORA [10], whose aim is to increase the persistent autonomy in

underwater operations. It constitutes, to the best of our knowledge,

the first application of a machine learning technique on an I-AUV to

learn an intervention task, in this case performing a valve turning ma-

nipulation in free-floating mode.

The application of LbD techniques in the underwater domain

presents several added complications due to the previously men-

tioned characteristics of the underwater medium. For this reason, the

implementation of the LbD algorithm has required to develop a com-

plete framework that combines navigation, control, and perception

to fully integrate the learning algorithm within the vehicle cognitive

architecture. The proposed framework, built on our previous work

[6], is designed to learn eight degrees of freedom (DoF) to control

simultaneously the trajectory of an AUV and its manipulator. To per-

ceive the environment, the system uses the vehicle cameras and also

a force and torque (F/T) sensor to detect the contact between the ma-

nipulator and the target object. Information from all these sensors

is acquired while a pilot is performing a demonstration of the inter-

vention task to be learned. Then, from a set of several demonstra-

tions, the proposed LbD algorithm generalizes a control policy able

to accomplish the intervention task with the same performance than

the human operator. Moreover, the previously presented framework

has been complemented with a fuzzy decision maker (RFDM) algo-

rithm that evaluates the risk of performing the manipulation accord-

ing to the environment conditions [1] and a partial-order task planner

[7] that manages the high-level decision making of the intervention

mission.

To validate the proposed approach the implemented framework

has been tested in the context of a valve turning intervention exper-

iment where an I-AUV was set to turn the t-shaped valve handles

of a sub-sea panel mock-up. We have further extended the results

presented in [6] to demonstrate the persistent operation of the de-

veloped cognitive system in a long experiment conducted in a water

tank during more than 3 h. In this experiment the vehicle has been

periodically localizing the panel and turning its valves to different

configurations along the time according to a predefined plan. Besides,

to simulate more realistic conditions and test the adaptability of the

manipulation trajectory under perturbations we have introduced wa-

ter currents through two external thrusters. Results prove the good

performance of the involved learning, control, perception and plan-

ning techniques even under the presence of high currents.

The rest of this paper is organized as follows. Section 2 overviews

related work on LbD in the robotics community and describes the

LbD algorithm that has been implemented. Section 3 describes

the vehicle used to perform the intervention task as well as the

developed intervention framework. Results obtained from the long

valve turning mission are presented and analyzed in Section 4.

Section 5 summarizes, and concludes the work.

2. Knowledge acquisition by means of learning by demonstration

In the context of cognitive systems, natural language is among the

most popular choices to represent knowledge. Using this representa-

tion, it is possible to reason about large amounts of data and extract

relevant information [24,25]. However, for describing the actions to

be performed by an I-AUV, the kinesthetic representation of these ac-

tions can be more simple and efficient than semantically describing

the task at hand. Along this idea, the LbD machine learning technique

has opened new avenues to transfer knowledge from an expert hu-

man operator to a machine through demonstrations.

This type of algorithm follows three sequential phases: first, a

set of demonstrations of the task are recorded; second, the algorithm

learns by generalizing all demonstrations and creating a model; fi-

nally, the algorithm loads the model and uses it to reproduce the task.

2.1. LbD related work

Different LbD algorithms have been proposed throughout the lit-

erature, depending on the method used to encode the learned trajec-

tory. Calinon et al. [5] proposed a representation based on Gaussian

mixture model (GMM), which was later extended by Krüger et al. [15]

using incremental GMM to automatically set the number of Gaus-

sians. Furthermore, Calinon et al. [4] parameterize the model with

the relevant coordinate system of the task and adapt the model in

real-time to changing position of the relevant elements in the envi-

ronment. Similar to the GMM, a hidden Markov model (HMM) [12]

has also been used to represent a trajectory, together with its corre-

spondent parametrized version by Kruger et al. [14]. Both GMM and

HMM representations require the use of a regression algorithm like

the Gaussian mixture regression (GMR) to generate a desired trajec-

tory with an associated density distribution.

A different approach is to use dynamic movement primitives

(DMP) [11,20]. Unlike GMM and HMM, DMP uses the learned model

to dynamically generate the required commands to perform the re-

production of the trajectory. This makes the approach more robust

to external perturbations and easily adaptable to different domains.

DMP has also been parameterized by Matsubara et al. [17] and ex-

tended by Kormushev et al. [13] to include a force associated with

the trajectory.

Therefore, given the simplicity of the representation and its flexi-

bility, DMP is more suitable in the context of this work and has been

chosen as the base of our learning framework.

2.2. Dynamic movement primitives (DMP)

DMP is an algorithm where the learned skill is encapsulated in

a superposition of basis motion fields (see Fig. 1). The method used

in this paper is an extension of the DMP proposed by Kormushev

et al. [13]. The flexibility of the representation allows the adaptation

of the algorithm to specific requirements, as it will be described in

Section 2.3.

To better understand this encoding, we can imagine a mass at-

tached to different damped strings. These strings attract the mass

changing their forces along the time of the experiment, moving the

mass following the desired trajectory.

To generate the superposition each attractor has an associated

weight which changes along the time defined by the hi(t) func-

tion (1). The weight of each attractor is represented with a Gaus-

sian, whose centers μT
i

are equally distributed in time, and whose

variance parameters �T
i

= total_time/K are set to a constant value
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