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In this paper we present a novel method for unraveling the hierarchical clusters in a given dataset using

the Gershgorin circle theorem. The Gershgorin circle theorem provides upper bounds on the eigenvalues

of the normalized Laplacian matrix. This can be utilized to determine the ideal range for the number of

clusters (k) at different levels of hierarchy in a given dataset. The obtained intervals help to reduce the search

space for identifying the ideal value of k at each level. Another advantage is that we don’t need to perform

the computationally expensive eigen-decomposition step to obtain the eigenvalues and eigenvectors. The

intervals provided for k can be considered as input for any spectral clustering method which uses a normalized

Laplacian matrix. We show the effectiveness of the method in combination with a spectral clustering method

to generate hierarchical clusters for several synthetic and real world datasets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering algorithms are widely used tools in fields like data min-

ing, machine learning, graph compression, probability density esti-

mation and many other tasks. The aim of clustering is to organize

data into natural groups in a given dataset. Clusters are defined such

that the data present within the group are more similar to each other

in comparison to the data between clusters. Clusters are ubiquitous

and application of clustering algorithms span from domains like mar-

ket segmentation, biology (taxonomy of plants and animals), libraries

(ordering books), WWW (clustering web log data to identify groups)

and study of the universe (grouping stars based on similarity) etc. A

variety of clustering algorithms exist in literature [1–13] etc. Spectral

clustering algorithms [7–9] have become widely popular for cluster-

ing data. Spectral clustering methods can handle complex non-linear

structure more efficiently than the k-means method. A kernel-based

modeling approach to spectral clustering was proposed in Ref. [10]

and referred as Kernel spectral clustering (KSC). In this paper we show

the effectiveness of the intervals provided by our proposed approach

in combination with KSC to obtain inference about the hierarchical

structure of a given dataset.

Most clustering algorithms require the end-user to provide the

number of clusters (referred as k). This is also applicable for KSC.
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Though for KSC, we have several model selection methods like bal-

anced line fit (BLF) [10], balanced angular fit (BAF)[11] and Fisher

criterion to estimate the number of clusters k which are computa-

tionally expensive. However, it is not always obvious to determine

the ideal value for k. It is best to choose an ideal value for k based

on prior information about the data. But such information is not al-

ways available and it makes exploratory data analysis quite difficult

particularly when the dimension of the input space is large.

A hierarchical kernel spectral clustering method was proposed in

Ref. [14]. In order to determine the optimal number of clusters (k)

at a given level of hierarchy the authors in Ref. [14] searched over

a grid of values for each kernel parameter σ . They select the value

of k corresponding to which the model selection criterion (BLF) is

maximum. A disadvantage of this method is that for each level of

hierarchy a grid search has to be performed on all the grid values for

k. In Ref. [11], the authors showed that the BAF criterion has multiple

peaks for different values of k corresponding to a given value of σ .

These peaks correspond to optimal value of k at different levels of

hierarchy. In this paper we present a novel method to determine the

ideal range for k at different levels of hierarchy in a given dataset

using the Gershgorin circle theorem [15].

A major advantage of the approach proposed in the paper is that we

provide intervals for different levels of hierarchy before applying any

clustering algorithm (or using any quality metric) unlike other hierar-

chical clustering algorithms. The Gershgorin circle theorem provides

lower and upper bounds to the eigenvalues of a normalized Laplacian

matrix. Using concepts similar to the eigengap, we can use these upper

bounds on the eigenvalues to estimate the number of clusters at each
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level of hierarchy. Another advantage of this method is that we over-

come the computationally expensive eigen-decomposition step. We

show the efficiency of the proposed method by providing these dis-

cretized intervals (range) as input to KSC for identifying the hierarchy

of clusters. These intervals can be used as starting point for any spec-

tral clustering method which works on a normalized Laplacian matrix

to identify the k clusters in the given dataset. The method works effec-

tively for several synthetic and real-world datasets as observed from

our experiments. Several approaches have been proposed to deter-

mine the ideal value of k for a given dataset [7,8,16–25,30]. Most of

these methods extend the k-means or expectation maximization and

proceed by splitting or merging techniques to increase or decrease

the number of clusters respectively.

In this paper we propose a novel method for providing an interval

(a range) for the number of clusters (k) in a given dataset. This interval

helps to reduce the search space for the ideal value of k. The method

uses the Gershgorin circle theorem along with upper bounds on the

eigenvalues for this purpose. There are several advantages of the pro-

posed approach. It allows us to identify intervals for the number of

clusters (k) at different levels of hierarchy. We overcome the require-

ment of performing the eigen-decomposition step, thereby reducing

the computational cost. There is no underlying assumption or prior

knowledge requirement about the data.

2. Proposed method

We consider the normalized Laplacian matrix (L) related to the

Random Walk model as defined in Ref. [27]. In this model, the Lapla-

cian matrix is defined as the transition matrix. This can mathemat-

ically be represented as L = D−1S where S is the affinity matrix and

D is the diagonal degree matrix such that Dii = ∑
j Sij. For this model,

the highest eigenvalue (equal to 1) has a multiplicity of k in case of

k well-separated clusters and a gap between the eigenvalues indi-

cates the existence of clusters. But in real world scenarios there is

presence of overlap between the clusters and the eigenvalues deviate

from 1. Then it becomes difficult to identify the threshold values to

determine the k clusters. Therefore, we utilize the Gershgorin circle

theorem to use the upper bounds on the eigenvalues to construct in-

tervals for determining the ranges for the number of clusters (k) at

each level of hierarchy in a given dataset. (If we use the normalized

Laplacian [L = I − D−1S] matrix then it would be required to use the

lower bounds on the eigenvalues to construct the intervals). The ac-

tual eigenvalues are obtained by performing eigen-decomposition on

Laplacian matrix L

Lvj = λjvj, j = 1, . . . , N (1)

where N is the number of eigenvalues.

Let L ∈ R
N×N be a square matrix which can be decomposed into the

sum L = C + R where C is a diagonal matrix and R is a matrix whose

diagonal entries are all zero. Let also ci = Cii, rij = Rij and r̄i = ∑N
j=1 |rij|.

Then, according to the Gershgorin circle theorem [15]:

• The ith Gershgorin disc associated to the ith row of L is defined as

the interval Ii = [ci − r̄i, ci + r̄i]. The quantities ci and ri are respec-

tively referred to as the center and the radius of disc Ii respectively.
• Every eigenvalue of L lies within at least one of the Gershgorin

discs Ii.
• The following condition holds:

cj − r̄j ≤ λ̄j ≤ cj + r̄j (2)

with λ̄j corresponding to disc Ij. For each eigenvalue of L, λi, i =
1, . . . , N there exists an upper bound λ̄j, j = 1, . . . , N where i need

not necessarily be equal to j. Thus, we have λi ≤ λ̄j.

We are provided with a dataset D = {x1, x2, . . . xN} where xi ∈ R
d.

We then construct the affinity matrix S by calculating similarity

between each xi and xj. Since we use a normalized Laplacian ma-

trix (L) the Gershgorin discs form a set of nested circles and the upper

bounds i.e. λ̄j = cj + r̄j are all close to 1. However, these λ̄j are more

robust and the variations in their values are not as significant as

the eigenvalues. It was shown in Ref. [25] that the eigenvalues are

positively correlated to the degree distribution in case of real world

datasets. This relation can be approximated by a linear function. We

empirically observe similar correlations between the degree distri-

bution and these upper bounds i.e. λ̄j generated by the Gershgorin

circle theorem. In Ref. [26], the authors perform stability analysis of

clustering across multiple levels of hierarchy. They analyze the dy-

namics of the Potts model and conclude that hierarchical information

for multivariate spin configuration could be inferred from spectral

significance of a Markov process. In Ref. [26] it was suggested that

for every stationary distribution (a level of hierarchy) the spins of

the whole system reach the same value. These spin values are de-

pendent on the different eigenvalues and the difference between the

eigenvalues of the system. Inspired from this concept we propose a

method to use the distance between the upper bounds to determine

the intervals to search for optimal values of k for different levels of

hierarchy.

We sort these λ̄j in descending order such that λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄N .

Similarly, all the eigenvalues are sorted in descending order such that

λ1 ≥ λ2 ≥ · · · ≥ λN . The relation λ1 ≤ λ̄1 holds in accordance to the

Gershgorin circle theorem. We propose a heuristic i.e. we calculate

the distance of each λ̄j from λ̄1 to obtain δj and maintain this value in

a dist vector. The distance value is defined as:

δj = Dist(λ̄1, λ̄j) (3)

where Dist(·, ·) is the Euclidean distance function.

We then sort this dist vector in descending order. In order to esti-

mate the intervals, we use a concept similar to the notion of eigengap.

We first try to locate the number of terms which are exactly the same

as λ̄1. This can be obtained by calculating the number of terms in the

dist vector such that Dist(λ̄1, λ̄j) = 0. This gives the lower limit for

the first interval say l1 = n1. If there is no λ̄j which is exactly equal

to λ̄1 then the lower limit for the first interval is 1. We then move to

the first term say λ̄p in the sorted dist vector which is different from

λ̄1. We calculate the number of terms say n2 in the dist vector which

are at the same distance as λ̄p from λ̄1. The upper limit for the first

interval is then defined as the sum of the lower limit and the number

of terms at the same distance as λ̄p i.e. u1 = n1 + n2. This upper limit

is also considered as the lower limit for the second interval. We con-

tinue this process till we obtain all the intervals. Since we are using

the bounds on the eigenvalues (λ̄j) instead of the actual eigenvalues

(λj), it is better to estimate intervals rather than the exact number of

clusters. If the length of an interval is say 1 or 2, the search space will

be too small. On the other hand, if the length of an interval is too large

then we might miss hierarchical structure. So we put a heuristic that

the minimum length of an interval should be 3. The intervals provide

a hierarchy in a top-down fashion i.e. the number of clusters increases

as the level of hierarchy increases. Algorithm 1 provides details of the

steps involved to obtain the intervals for each level of hierarchy of a

given dataset.

Fig. 1 depicts the steps involved in determining the intervals for es-

timating the number of clusters (k) at different levels of hierarchy for

the R15 [28] dataset. The R15 dataset contains 600 two-dimensional

points. There are 15 clusters in this dataset. In Fig. 1(d), we depict

the lower limit of the intervals as l1, l2, l3, l4, l5 and l6 and the up-

per limit of the intervals as u1, u2, u3, u4 and u5 respectively. Using

these limits the first 5 intervals that we obtain for the R15 dataset

are 1–8, 8–12, 12–19, 19–29 and 29–40 respectively. These intervals

are obtained using Algorithm 1. From Fig. 1, we show that first we

obtain the Gershgorin discs (Fig. 1(a)) which provides us the upper

bounds on the eigenvalues. This is followed by the plot of the actual

eigenvalues in descending order to show that the actual number of
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