
Pattern Recognition Letters 55 (2015) 15–21

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Order preserving pattern matching revisited ✩

Md. Mahbubul Hasan a,1, A.S.M. Shohidull Islam a,b, Mohammad Saifur Rahman a,
M. Sohel Rahman a,∗

a A�EDA Group, Department of CSE, BUET, Dhaka 1000, Bangladesh
b Department of Computational Engineering and Science, McMaster University, Hamilton, Ontario, Canada

a r t i c l e i n f o

Article history:

Received 18 March 2014

Available online 11 December 2014

Keywords:

Algorithms

Pattern matching

Document processing

Sequence analysis

a b s t r a c t

In this paper, we study the order preserving pattern matching (OPPM) problem, which is a very recent variant

of the classic pattern matching problem. We revisit this variant, present a new interesting pattern matching

algorithm and for the first time consider string regularities from this new perspective.

© 2014 Published by Elsevier B.V.

1. Introduction

Given a string (or text) T and pattern P under an alphabet �, the

classic string/pattern matching problem asks whether P occurs in T

and if yes, then it further reports the occurrences of P in T. This prob-

lem has extensive applications in different branches of science and

engineering. Due to different types of requirements in different appli-

cation scenarios, a plethora of variants of the classic string matching

problem have been introduced and studied in the literature. The focus

of this paper is a very recent variant which is called the order pre-

serving pattern matching (OPPM). In OPPM, like the classic variant, we

have a text T and a pattern P as input. However, the underlying alpha-

bet here is an integer alphabet. And, instead of looking for a substring

of the text which is identical to the given pattern, we are interested

in locating a fragment which is order-isomorphic with the pattern.

Two sequences over an integer alphabet are order-isomorphic if the

relative order between any two elements at the same positions in

both the sequences is the same.

To the best of our knowledge, OPPM was first studied indepen-

dently by Kim et al. [6] and Kubica et al. [8].2 Since then, within quite

a short period of time, a number of works on OPPM in different di-

rections have been reported in the literature. For example, order pre-

serving suffix trees and index data structures have been devised and

✩ This paper has been recommended for acceptance by A. Koleshnikov.
∗ Corresponding author at: Commonwealth Academic Fellow funded by the UK

Government. Currently on a sabbatical leave from BUET. Tel.: +8801552389480; fax:

+448712475276.

E-mail address: msrahman@cse.buet.ac.bd (M. Sohel Rahman).
1 Currently working at Google Zurich.
2 The problem was also presented at the Theo Murphy International Scientific Meet-

ing of the Royal Society on Storage and Indexing of Massive Data.

different applications thereof have been discussed by Crochemore

et al. [2,3]. On the other hand, Cho et al. [1] have presented practically

fast algorithms for OPPM. Gawrychowski and Uznanski [4] have con-

sidered the approximate version of the problem where k mismatches

are allowed.

In this paper, we revisit the order preserving pattern matching

problem. Our main contribution in this paper is the study of string

regularities from an order preserving point of view. To the best of our

knowledge, this is the first attempt to capture the concept regularities

form this perspective. In what follows we will conveniently refer to

this as order preserving regularities. String regularities have been the

focus of attention of stringology researchers since long. The following

has been articulated by Smyth [10] in a very recent survey on string

regularities:

. . . In the intervening century, certainly thousands of research

papers have been written by mathematicians and (over the

last half century) also computer scientists that relate in some

way to periodicity, or its variants, in strings. A word that has

recently been brought into service to describe these variants

is “regularities” . . .

Apart from periodicity, the most notable and studied regularities

of a string are borders and covers. Hence, in this paper we consider

periods, borders and covers of strings from the order preserving point

of view (Section 4). We also discuss yet another order preserving

pattern matching algorithm (Section 4). Our algorithms are based

on the so called Z-algorithm discussed by Gusfield in Chapter 2 of

his famous book [5]. In particular, we propose modifications to the

Z-algorithm or Z-function of Gusfield to make it useful in the order

preserving framework (Section 3). The modified Z-algorithm for a

string presented in this paper could be of independent interest.

http://dx.doi.org/10.1016/j.patrec.2014.11.013

0167-8655/© 2014 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.patrec.2014.11.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.11.013&domain=pdf
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.patrec.2014.11.013

16 Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21

6 8 10

10

20

30

40

12420

Pattern

Text

5

15

10

20

17

23 23

8

15

20

10

28
30

25

35 35
37

20

28

Fig. 1. An example instance of OPPM.

Table 1

An example of Z-function.

S = A C A G G T A C A G T T C C C T C G A C A C C T A C T A C C T A A G

Z(S) = 34 0 1 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 2 0 0 2 0 0 0 1 1 0

Besides the inherent combinatorial and algorithmic beauty of the

problem itself, the motivation also comes from a number of inter-

esting practical applications. For example, it can be applied to a time

series analysis like share prices on stock markets to recognize specific

patterns and to musical melody matching of two musical scores [1,6].

An example is given in Fig. 1. The problem also has some interesting

relation to the combinatorial study of patterns in permutations, in

particular to the study of pattern avoidance [8].

2. Preliminaries

We use � to denote the set of numbers such that the compar-

ison of two numbers can be done in constant time and �∗ de-

notes the set of strings over the alphabet �. The length of a string

S = (S[1], S[2], . . . , S[n]) is denoted by |S| = n. For n = 0, we say that

S = ε, the empty string. If S = UVW , then U is said to be a prefix, V a

substring (also called a factor) and W a suffix of S. If VW �= ε (UV �= ε)

then U (W) is a proper prefix (proper suffix) of S. Similarly, if UW �= ε,

then V is a proper substring. A substring (S[i], S[i + 1], . . . , S[j]) of S is

denoted by S[i, j], the ith prefix S[1, i] by prefixi(S) and the ith suffix

S[i, |S|] by suffixi(S).
The rank of a number c in a string S is defined as follows:

rankS(c) = 1 + |{i | S[i] < c, 1 ≤ i ≤ |S|}|.
To be consistent with the previous works [6], we assume that all

the numbers in a string are distinct. The order preserving represen-

tation (OPR) σ(S) of a string S can be defined as follows:

σ(S) = rankS(S[1]), rankS(S[2]), . . . , rankS(S[|S|]).
If two strings S1 and S2 have identical OPR, i.e., σ(S1) = σ(S2), then

we say that the two strings are OPR-equal.

Since we are interested in string regularities, here we discuss

some related notions and definitions. Part of the following descrip-

tion is conveniently adopted from a recent survey of Smyth [10]. If

S = S[1 . . . n] has a proper (though possibly empty) prefix U that is also

a suffix of S, then U is said to be a border of S. For example, for string

S = (1, 2, 1, 2, 1), one border would be (1, 2, 1). The entire string can

be considered as a special border. If for some p ∈ 1 . . . n, S[i] = S[p + i]

for every i ∈ 1 . . . n − p, then S is said to have period p. Thus S always

has the empty border ε and the trivial period n. It is well-known, and

easy to prove, that S has period p if, and only if, it has a border of length

n − p. The border array βS of a string S is an array of length n such

that βS[i] equals the length of the longest border of S[1 . . . i] for ev-

ery i ∈ 1 . . . n. Since βS[i] = b > 0 implies that βS[b] is the next largest

border of S[1 . . . i], it follows that βS specifies all the borders, hence

all the periods, of every prefix of S. A simple �(n)-time algorithm can

compute the border array of a string having length n [9].

A string S has quasiperiod q < n if and only if there exists a string

U = U[1 . . . q], called a cover of S, such that every position of S lies

within an occurrence of U. Thus a cover must also be a border of S. For

example, U = (1, 2, 1) is a cover of S = (1, 2, 1, 2, 1, 1, 2, 1). A cover

U �= S is called a proper cover.

Since we will be heavily using the Z-function of Gusfield [5], here

we briefly review the concept. The Z-function, Zi(S) is the length of

the longest substring of S that starts at position i and matches a prefix

of S. We give an example of the Z-function for a string S on the DNA

alphabet (i.e., {A, C, G, T}) in Table 1.

3. Modified Z-function

3.1. Definition

In this section, we propose a modification of the Z-function to

make it useful from the order preserving point of view. We start with

the following formal definition. For the sake of notational ease, we do

not introduce an extended notation to denote Z-function from order

preserving point of view; so, in the rest of this paper, unless otherwise

specified, we will continue to use the term Z-function to consider it

from the order preserving point of view.

Definition 1. Given a string S, the Z-function Zi(S), 1 ≤ i ≤ |S| is the

length of the longest prefix P of suffixi(S)such that σ(P) = σ(S[1, |P|]).

Download English Version:

https://daneshyari.com/en/article/536279

Download Persian Version:

https://daneshyari.com/article/536279

Daneshyari.com

https://daneshyari.com/en/article/536279
https://daneshyari.com/article/536279
https://daneshyari.com

