
Pattern Recognition Letters 55 (2015) 42–50

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

An efficient tree structure for indexing feature vectors ✩

The-Anh Pham a,b,∗, Sabine Barrat a, Mathieu Delalandre a, Jean-Yves Ramel a

a Laboratory of Computer Science, Francois Rabelais University, Tours 37200, France
b Hong Duc University, Thanh Hoa City, Viet Nam

a r t i c l e i n f o

Article history:

Received 4 December 2013

Available online 11 October 2014

Keywords:

Exact nearest neighbour search

Approximate nearest neighbour search

Feature indexing

Randomized KD-trees

Randomized clustering trees

a b s t r a c t

This paper addresses the problem of feature indexing in feature vector space. A linked-node m-ary tree (LM-

tree) structure is presented to quickly produce the queries for an approximate and exact nearest neighbour

search. Three main contributions are made, which can be attributed to the proposed LM-tree. First, a new

polar-space-based method of data decomposition is presented to construct the LM-tree. Second, a novel

pruning rule is proposed to efficiently narrow down the search space. Finally, a bandwidth search method is

introduced to explore the nodes of the LM-tree. Extensive experiments were performed to study the behaviour

of the proposed indexing algorithm. These experimental results showed that the proposed algorithm provides

a significant improvement in the search performance for the tasks of both exact and approximate nearest

neighbour (ENN/ANN) searches.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fast nearest neighbour search is of central importance for many

computer vision systems, such as systems for object matching, ob-

ject recognition, and image retrieval. Although a large number of

indexing algorithms have been proposed in the literature, few of

them (e.g., LHS-based schemes of Lv et al. [1], randomized KD-

trees of Silpa-Anan and Hartley [2], randomized K-medoids cluster-

ing trees of Muja and Lowe [3], and the hierarchical K-means tree

of Muja and Lowe [4]) have been well validated with extensive ex-

periments to show satisfactory performance on specific benchmarks.

In this work, we restrict the indexing algorithms to feature vector

space rather than metric space. Generally, these indexing algorithms

are categorized into space-partitioning, clustering, hashing and hy-

brid approaches. We will discuss hereafter the most representative

methods.

Space-partitioning approach: Friedman et al. [5] introduced KD-

tree, whose basic idea is to iteratively partition the data X into two

roughly equal-sized subsets, by using a hyperplane that is perpen-

dicular to a split axis in a D-dimensional vector space. Searching for

a nearest neighbour of a given query point q is accomplished by us-

ing a branch-and-bound technique. Several variations of the KD-tree

have been investigated to address the ANN search. Best-Bin-First (BBF)

search or priority search of Beis and Lowe [6] is a typical improvement

✩ This paper has been recommended for acceptance by G. Sanniti di Baja.
∗ Corresponding author at: Hong Duc University, Thanh Hoa City, Viet Nam. Tel.: +84

912 721 200.

E-mail address: phamtheanh@hdu.edu.vn (T. Pham).

on the KD-tree. Its basic idea is twofold. First, it limits the maximum

number of data points to be searched. Second, it visits the nodes in

the order of increasing distances to the query. The use of priority

search was further improved in [2]. In this paper, the author con-

structed multiple randomized KD-trees (RKD-trees), each of which is

built by selecting, randomly, at each node, a split axis from a few di-

mensions having the highest variance. A slight difference in the RKD-

trees was also investigated in this work, where the data are initially

aligned to the principal axes. Hence, the obtained indexing scheme

is called principal component KD-trees (PKD-trees). Experimental re-

sults show significantly outstanding performance compared to the

use of a single KD-tree. A last noticeable improvement in the KD-tree

for the ENN search is the principal axis tree (PAT-tree) of [7]. In the

PAT-tree, the split axis is chosen as the principal axis, which has the

highest variance in the underlying data. Therefore, the obtained re-

gions are treated as hyper-polygons rather than as hyper-rectangles,

as in the KD-tree. Consequently, this approach complicates the pro-

cess of computing the lower bound of the distance from the query to

a given node.

Clustering approach: The clustering-based indexing methods dif-

fer from the space-partitioning-based methods mainly in the step of

tree construction. Instead of dividing the data by using a hyper-plane,

these methods employ a clustering method (e.g., K-means by Fuku-

naga and Narendra [8], K-medoids by Muja and Lowe [3]) to iteratively

partition the underlying data into sub-clusters. The partitioning pro-

cess is then repeated until the size of all of the sub-clusters falls below

a threshold. Muja and Lowe [4] extended the work in Fukunaga and

Narendra [8] by incorporating the use of priority queue to the hier-

archical clustering tree. In their work, an ANN search proceeds by

http://dx.doi.org/10.1016/j.patrec.2014.08.006

0167-8655/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2014.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.08.006&domain=pdf
mailto:phamtheanh@hdu.edu.vn
http://dx.doi.org/10.1016/j.patrec.2014.08.006


T.-A. Pham et al. / Pattern Recognition Letters 55 (2015) 42–50 43

traversing down the tree and always chooses the node whose clus-

ter centre is closest to the query. Each time that a node is selected

for further exploration, the other sibling nodes are inserted into a

priority queue that contains a sequence of nodes that are stored in

increasing order of their distances to the query. This process contin-

ues when reaching a leaf node and is followed by a sequence search

for the points contained in that node. Backtracking is then invoked,

starting from the top node in the priority queue. During the search

process, the algorithm maintains adding new candidate nodes to the

priority queue. Experimental results show that the proposed algo-

rithm gives better results than two other state-of-the-art methods.

The hierarchical clustering tree in [4] has been further extended in

[3] to build up multiple hierarchical clustering trees. The ANN search

proceeds in parallel among the hierarchical clustering trees. Exper-

imental results show that a significant improvement in the search

performance is achieved and that the proposed algorithm can scale

well to large-scale datasets.

Hashing approach: Locality-sensitive hashing (LHS) of Indyk and

Motwani [9] has been known as one of the most popular hashing-

based methods. The key idea is to project the data into a large number

of random lines in such a way that the likelihood of hashing two data

points into the same bucket is proportional to their similarity degree.

Given a query, a proximity search is proceeded by first projecting the

query using the LSH functions. The obtained indices are then used to

access the appropriate buckets followed by a sequence search for the

data points contained in the buckets. Given a sufficiently large num-

ber of hash tables, the LSH can perform an ANN search in sub-linear

time complexity. Kulis and Grauman [10] extended the LSH to the

case in which the similarity function is an arbitrary kernel function

κ: D(p, q) = κ(p, q) = φ(p)Tφ(q), where φ(x) is an unknown embed-

ding function. The main drawback of these two studies is the use of

a very large memory space to construct the hash tables. To address

this issue, Panigrahy [11] introduced an entropy-based LSH indexing

technique. Its basic idea is quite interesting: given a query q and a pa-

rameter r of the distance from q to its nearest neighbour, the synthetic

neighbours of q within a distance r are randomly generated. These

synthetic neighbours are then hashed by using the LSH functions. The

obtained hash keys are used to access the bucket candidates, where

it is expected that the true nearest neighbour of q could be present.

A detailed analysis of the entropy-based LSH algorithm was reported

by Lv et al. [1]; this paper showed that the entropy-based LSH al-

gorithm does not give a noticeable search improvement compared

to the original LSH method. Lv et al. [1] proposed another approach,

which is known as multi-probe LSH, to reduce the utilized hash tables.

Its basic idea is to search multiple buckets, which probably contain

the potential nearest neighbours of the query. The rationale is easily

seen: if a data point p is close to another data point q but they are not

hashed into the same bucket, then there is a high chance that they are

hashed into two “close” buckets. Experimental results show a signif-

icant improvement in terms of the space efficiency, compared to the

original LSH scheme. Recently, Aiger et al. [12] introduced a variation

of the LSH scheme based on random grids. A dataset X, which consists

of n D-dimensional vectors, is randomly rotated and shifted up to

eD/c times where c is an approximate factor of search precision (e.g.,

c = 2 in their experiments). For each rotation/translation, the corre-

sponding dataset is partitioned using an uniform grid of cells where

cell size w = c/
√

D and the points contained in each cell are hashed

into the same bucket. Consequently, space overhead is a big concern

of this method (i.e., O(DeD/cn)). For instance, if 128-dimensional SIFT

features are used, the proposed method consumes a huge memory

space of O(128e64n).
Hybrid approach: Recent interests in ANN search have been

moved towards product quantization (PQ) which can be considered as

a hybrid fashion of space-partitioning and clustering approaches. The

crucial benefit of using PQ for ANN search is the capability of indexing

extremely large-scale and high-dimensional datasets. Jégou et al. [13]

introduced a PQ-based method whose basic idea is to uniformly de-

compose the original data space into distinct sub-spaces and then to

create separately an optimized sub-codebook for the data in each sub-

space using K-means algorithm. Non exhaustive search is proceeded

by employing an inverted file structure. However, as PQ employs an

axis-aligned grid for space decomposition, many centroids are created

without the support of data. This damages the search performance be-

cause it was widely agreed that better fitting to the underlying data

is crucial for achieving good search speed and search accuracy. Ge

et al. [14] extended PQ by introducing optimized product quantiza-

tion (OPQ). The main spirit of OPQ is to design a quantizer that solves

the quantization optimization problem in both aspects of space de-

composition and sub-codebook construction. Doing so, OPQ allows

the split grid to be rotated by arbitrary orientation to make better

fitting of the underlying distribution. Although OPQ significantly out-

performs PQ in search performance, such an alignment is less-efficient

to the cases of multi-model distribution as discussed by Kalantidis

and Avrithis [15]. To address this issue, Kalantidis and Avrithis [15]

proposed optimizing locally the PQ per centroid for quantizing the

residual distribution. However, learning locally an optimized PQ is

not an efficient process if a non-parametric optimization fashion is

used. Alternatively, a parametric learning technique can be applied

that requires an assumption of some prior knowledge about the un-

derlying distribution (e.g., typically a Gaussian distribution). Conse-

quently, search performance would be degraded if the assumption is

not satisfied.

In this work, we conduct a detailed investigation of our previous

work in [16] for indexing the feature vectors. Specifically, we have

carried out the following extensions:

• We provide a deeper and wider review of related work by in-

cluding recent progress for ANN search (e.g., product quantization

approaches).
• The spirit of the proposed approach is thoroughly presented with

deeper analysis and illustration.
• Additional experiments (e.g., more datasets) and an application to

image retrieval are included for better evaluation of the proposed

approach.
• A thorough study of parameter impact is also investigated coupling

with the addition of an automatic parameter tuning algorithm to

make the proposed indexing scheme well-adapted to a specific

dataset and search precision.

For the remainder of this paper, Section 2 presents the proposed

approach. Section 3 dedicates to performance evaluation. Section 4

concludes the paper and defines some future work.

2. The LM-tree indexing algorithm

2.1. Construction of the LM-tree

For a better presentation of our approach, we use the notation p

component of p (1 ≤ i ≤ D). We also denote p = (pi1
, pi2

)as a point in a

2D space. It is assumed that the Euclidean distance is employed in this

work unless specifying otherwise. We adopted here the conclusion

made in [2] about the use of PCA for aligning the data before con-

structing the LM-tree. This approach enables us to partition the data

via the narrowest directions. In particular, the dataset X is translated

to its centroid following a step of data rotation to make the coordinate

axes aligned with the principal axes. Note that no dimension reduc-

tion is performed in this step. In fact, PCA analysis is used only to align

the data. Next, the LM-tree is constructed by recursively partitioning

the dataset X into m roughly equal-sized subsets as follows:

• Sort the axes in decreasing order of variance, and choose randomly

two axes, i1 and i2, from the first L highest variance axes (L < D).



Download English Version:

https://daneshyari.com/en/article/536284

Download Persian Version:

https://daneshyari.com/article/536284

Daneshyari.com

https://daneshyari.com/en/article/536284
https://daneshyari.com/article/536284
https://daneshyari.com

