Pattern Recognition Letters 55 (2015) 42-50

journal homepage: www.elsevier.com/locate/patrec

Contents lists available at ScienceDirect

Pattern Recognition Letters

I;;ittern Recognition
Letters

An efficient tree structure for indexing feature vectors ™

@ CrossMark

The-Anh Pham®P* Sabine Barrat?, Mathieu Delalandre?, Jean-Yves Ramel?

2 Laboratory of Computer Science, Francois Rabelais University, Tours 37200, France
b Hong Duc University, Thanh Hoa City, Viet Nam

ARTICLE INFO ABSTRACT
Article history:
Received 4 December 2013

Available online 11 October 2014

Keywords:

Exact nearest neighbour search
Approximate nearest neighbour search
Feature indexing

Randomized KD-trees

Randomized clustering trees

This paper addresses the problem of feature indexing in feature vector space. A linked-node m-ary tree (LM-
tree) structure is presented to quickly produce the queries for an approximate and exact nearest neighbour
search. Three main contributions are made, which can be attributed to the proposed LM-tree. First, a new
polar-space-based method of data decomposition is presented to construct the LM-tree. Second, a novel
pruning rule is proposed to efficiently narrow down the search space. Finally, a bandwidth search method is
introduced to explore the nodes of the LM-tree. Extensive experiments were performed to study the behaviour
of the proposed indexing algorithm. These experimental results showed that the proposed algorithm provides
a significant improvement in the search performance for the tasks of both exact and approximate nearest
neighbour (ENN/ANN) searches.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fast nearest neighbour search is of central importance for many
computer vision systems, such as systems for object matching, ob-
ject recognition, and image retrieval. Although a large number of
indexing algorithms have been proposed in the literature, few of
them (e.g., LHS-based schemes of Lv et al. [1], randomized KD-
trees of Silpa-Anan and Hartley [2], randomized K-medoids cluster-
ing trees of Muja and Lowe [3], and the hierarchical K-means tree
of Muja and Lowe [4]) have been well validated with extensive ex-
periments to show satisfactory performance on specific benchmarks.
In this work, we restrict the indexing algorithms to feature vector
space rather than metric space. Generally, these indexing algorithms
are categorized into space-partitioning, clustering, hashing and hy-
brid approaches. We will discuss hereafter the most representative
methods.

Space-partitioning approach: Friedman et al. [5] introduced KD-
tree, whose basic idea is to iteratively partition the data X into two
roughly equal-sized subsets, by using a hyperplane that is perpen-
dicular to a split axis in a D-dimensional vector space. Searching for
a nearest neighbour of a given query point q is accomplished by us-
ing a branch-and-bound technique. Several variations of the KD-tree
have been investigated to address the ANN search. Best-Bin-First (BBF)
search or priority search of Beis and Lowe [6] is a typical improvement

* This paper has been recommended for acceptance by G. Sanniti di Baja.
* Corresponding author at: Hong Duc University, Thanh Hoa City, Viet Nam. Tel.: +84
912 721 200.
E-mail address: phamtheanh@hdu.edu.vn (T. Pham).

http://dx.doi.org/10.1016/j.patrec.2014.08.006
0167-8655/© 2014 Elsevier B.V. All rights reserved.

on the KD-tree. Its basic idea is twofold. First, it limits the maximum
number of data points to be searched. Second, it visits the nodes in
the order of increasing distances to the query. The use of priority
search was further improved in [2]. In this paper, the author con-
structed multiple randomized KD-trees (RKD-trees), each of which is
built by selecting, randomly, at each node, a split axis from a few di-
mensions having the highest variance. A slight difference in the RKD-
trees was also investigated in this work, where the data are initially
aligned to the principal axes. Hence, the obtained indexing scheme
is called principal component KD-trees (PKD-trees). Experimental re-
sults show significantly outstanding performance compared to the
use of a single KD-tree. A last noticeable improvement in the KD-tree
for the ENN search is the principal axis tree (PAT-tree) of [7]. In the
PAT-tree, the split axis is chosen as the principal axis, which has the
highest variance in the underlying data. Therefore, the obtained re-
gions are treated as hyper-polygons rather than as hyper-rectangles,
as in the KD-tree. Consequently, this approach complicates the pro-
cess of computing the lower bound of the distance from the query to
a given node.

Clustering approach: The clustering-based indexing methods dif-
fer from the space-partitioning-based methods mainly in the step of
tree construction. Instead of dividing the data by using a hyper-plane,
these methods employ a clustering method (e.g., K-means by Fuku-
nagaand Narendra [8], K-medoids by Muja and Lowe [3]) to iteratively
partition the underlying data into sub-clusters. The partitioning pro-
cess is then repeated until the size of all of the sub-clusters falls below
a threshold. Muja and Lowe [4] extended the work in Fukunaga and
Narendra [8] by incorporating the use of priority queue to the hier-
archical clustering tree. In their work, an ANN search proceeds by


http://dx.doi.org/10.1016/j.patrec.2014.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.08.006&domain=pdf
mailto:phamtheanh@hdu.edu.vn
http://dx.doi.org/10.1016/j.patrec.2014.08.006

T.-A. Pham et al./ Pattern Recognition Letters 55 (2015) 42-50 43

traversing down the tree and always chooses the node whose clus-
ter centre is closest to the query. Each time that a node is selected
for further exploration, the other sibling nodes are inserted into a
priority queue that contains a sequence of nodes that are stored in
increasing order of their distances to the query. This process contin-
ues when reaching a leaf node and is followed by a sequence search
for the points contained in that node. Backtracking is then invoked,
starting from the top node in the priority queue. During the search
process, the algorithm maintains adding new candidate nodes to the
priority queue. Experimental results show that the proposed algo-
rithm gives better results than two other state-of-the-art methods.
The hierarchical clustering tree in [4] has been further extended in
[3] to build up multiple hierarchical clustering trees. The ANN search
proceeds in parallel among the hierarchical clustering trees. Exper-
imental results show that a significant improvement in the search
performance is achieved and that the proposed algorithm can scale
well to large-scale datasets.

Hashing approach: Locality-sensitive hashing (LHS) of Indyk and
Motwani [9] has been known as one of the most popular hashing-
based methods. The key idea is to project the data into a large number
of random lines in such a way that the likelihood of hashing two data
points into the same bucket is proportional to their similarity degree.
Given a query, a proximity search is proceeded by first projecting the
query using the LSH functions. The obtained indices are then used to
access the appropriate buckets followed by a sequence search for the
data points contained in the buckets. Given a sufficiently large num-
ber of hash tables, the LSH can perform an ANN search in sub-linear
time complexity. Kulis and Grauman [10] extended the LSH to the
case in which the similarity function is an arbitrary kernel function
k:D(p.q) =k, q) = d(P)TP(q), where ¢ (x) is an unknown embed-
ding function. The main drawback of these two studies is the use of
a very large memory space to construct the hash tables. To address
this issue, Panigrahy [11] introduced an entropy-based LSH indexing
technique. Its basic idea is quite interesting: given a query g and a pa-
rameter r of the distance from q to its nearest neighbour, the synthetic
neighbours of q within a distance r are randomly generated. These
synthetic neighbours are then hashed by using the LSH functions. The
obtained hash keys are used to access the bucket candidates, where
it is expected that the true nearest neighbour of g could be present.
A detailed analysis of the entropy-based LSH algorithm was reported
by Lv et al. [1]; this paper showed that the entropy-based LSH al-
gorithm does not give a noticeable search improvement compared
to the original LSH method. Lv et al. [1] proposed another approach,
which is known as multi-probe LSH, to reduce the utilized hash tables.
Its basic idea is to search multiple buckets, which probably contain
the potential nearest neighbours of the query. The rationale is easily
seen: if a data point p is close to another data point q but they are not
hashed into the same bucket, then there is a high chance that they are
hashed into two “close” buckets. Experimental results show a signif-
icant improvement in terms of the space efficiency, compared to the
original LSH scheme. Recently, Aiger et al. [12] introduced a variation
of the LSH scheme based on random grids. A dataset X, which consists
of n D-dimensional vectors, is randomly rotated and shifted up to
eP/c times where c is an approximate factor of search precision (e.g.,
¢ = 2 in their experiments). For each rotation/translation, the corre-
sponding dataset is partitioned using an uniform grid of cells where
cell size w = ¢/+/D and the points contained in each cell are hashed
into the same bucket. Consequently, space overhead is a big concern
of this method (i.e., 0(DeP/n)). For instance, if 128-dimensional SIFT
features are used, the proposed method consumes a huge memory
space of 0(128¢54n).

Hybrid approach: Recent interests in ANN search have been
moved towards product quantization (PQ) which can be considered as
a hybrid fashion of space-partitioning and clustering approaches. The
crucial benefit of using PQ for ANN search is the capability of indexing
extremely large-scale and high-dimensional datasets. Jégou et al. [13]

introduced a PQ-based method whose basic idea is to uniformly de-
compose the original data space into distinct sub-spaces and then to
create separately an optimized sub-codebook for the data in each sub-
space using K-means algorithm. Non exhaustive search is proceeded
by employing an inverted file structure. However, as PQ employs an
axis-aligned grid for space decomposition, many centroids are created
without the support of data. This damages the search performance be-
cause it was widely agreed that better fitting to the underlying data
is crucial for achieving good search speed and search accuracy. Ge
et al. [14] extended PQ by introducing optimized product quantiza-
tion (OPQ). The main spirit of OPQ is to design a quantizer that solves
the quantization optimization problem in both aspects of space de-
composition and sub-codebook construction. Doing so, OPQ allows
the split grid to be rotated by arbitrary orientation to make better
fitting of the underlying distribution. Although OPQ significantly out-
performs PQ in search performance, such an alignment is less-efficient
to the cases of multi-model distribution as discussed by Kalantidis
and Avrithis [15]. To address this issue, Kalantidis and Avrithis [15]
proposed optimizing locally the PQ per centroid for quantizing the
residual distribution. However, learning locally an optimized PQ is
not an efficient process if a non-parametric optimization fashion is
used. Alternatively, a parametric learning technique can be applied
that requires an assumption of some prior knowledge about the un-
derlying distribution (e.g., typically a Gaussian distribution). Conse-
quently, search performance would be degraded if the assumption is
not satisfied.

In this work, we conduct a detailed investigation of our previous
work in [16] for indexing the feature vectors. Specifically, we have
carried out the following extensions:

o We provide a deeper and wider review of related work by in-
cluding recent progress for ANN search (e.g., product quantization
approaches).

o The spirit of the proposed approach is thoroughly presented with
deeper analysis and illustration.

« Additional experiments (e.g., more datasets) and an application to
image retrieval are included for better evaluation of the proposed
approach.

o Athorough study of parameter impactis also investigated coupling
with the addition of an automatic parameter tuning algorithm to
make the proposed indexing scheme well-adapted to a specific
dataset and search precision.

For the remainder of this paper, Section 2 presents the proposed
approach. Section 3 dedicates to performance evaluation. Section 4
concludes the paper and defines some future work.

2. The LM-tree indexing algorithm
2.1. Construction of the LM-tree

For a better presentation of our approach, we use the notation p
componentofp(1 <i < D). Wealsodenotep = (p;,, p;,)asapointina
2D space. It is assumed that the Euclidean distance is employed in this
work unless specifying otherwise. We adopted here the conclusion
made in [2] about the use of PCA for aligning the data before con-
structing the LM-tree. This approach enables us to partition the data
via the narrowest directions. In particular, the dataset X is translated
to its centroid following a step of data rotation to make the coordinate
axes aligned with the principal axes. Note that no dimension reduc-
tion is performed in this step. In fact, PCA analysis is used only to align
the data. Next, the LM-tree is constructed by recursively partitioning
the dataset X into m roughly equal-sized subsets as follows:

o Sort the axes in decreasing order of variance, and choose randomly
two axes, i; and iy, from the first L highest variance axes (L < D).



Download English Version:

https://daneshyari.com/en/article/536284

Download Persian Version:

https://daneshyari.com/article/536284

Daneshyari.com


https://daneshyari.com/en/article/536284
https://daneshyari.com/article/536284
https://daneshyari.com

