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a b s t r a c t

3D rotation invariants based on orthogonal Gaussian–Hermite moments are proposed in this paper. We

present an elegant and easy theoretical derivation of them. At the same time we prove by experiments that

the Gaussian–Hermite invariants have better numerical stability than the traditional invariants composed of

geometric moments.
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1. Introduction

Pattern classification and object recognition play vital roles in

image processing and computer vision. Generally, recognition is

achieved by seeking descriptors that can represent the object regard-

less of certain transformations and/or deformations. Moment invari-

ants were proved to be very powerful tools for feature representation

and it has been demonstrated many times that moment invariants

perform effectively in object recognition [1].

So far, various kinds of moment invariants to spatial transforma-

tions of the object have been proposed. Among all transformations

that have been studied in this context, rotation plays a central role.

Being a part of rigid-body transformation, object rotation is present

almost in all applications, even if the imaging system is well set up

and the experiment has been prepared in a laboratory. On the other

hand, rotation is not trivial to handle mathematically, unlike for in-

stance translation and scaling. For these two reasons, invariants to

rotation have been in focus of researchers since the beginning.

With the rapid progress of applied mathematics, computer sci-

ence and sensor technology, 3D imaging comes into engineering and

practice due to its more flexible and precise descriptions of 3D ob-

jects. Undoubtedly, developing rotation invariants for 3D images has

become a hot topic in the computer vision community. However, 3D

rotation is more difficult to handle than its 2D counterpart, since it

has three independent parameters. That is probably why only few

papers on 3D rotation moment invariants have appeared so far. The

first attempts to derive 3D rotation moment invariants are relatively

old. Sadjadi and Hall [2] explored ternary quadratics extensively and
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derived three translation, rotation and scaling (TRS) moment invari-

ants. Guo [3] proved the results of Sadjadi and Hall in the different

way and he derived more invariants to translation and rotation in 3D

space. Cyganski and Orr [4] applied tensor theory to derive 3D rotation

invariants. This method was also mentioned by Reiss [5], who used

invariant image features to recognize planar objects. Xu and Li [6]

developed the invariants in both 2D and 3D space based on geomet-

ric primitives, such as distance, area, and volume. Galvez and Canton

[7] employed normalization approach. The object is transformed into

the coordinates given by eigenvectors of the second-order moment

matrix and its transformed moments are taken as invariants. A mod-

ification of this method appeared in [8], where a slightly different

moment matrix is used for normalization. Another method to derive

3D rotation invariants is based on complex moments [9,10]. Recently,

Suk and Flusser [11] proposed an automatic algorithm to generate 3D

rotation invariants from geometric moments up to an arbitrary order.

Although moments are probably the most popular 3D shape de-

scriptors, it should be mentioned that they are not the only features

providing rotation invariance. For example, Kakarala and Mao [12]

used the bispectrum well-known from statistics for feature compu-

tation. Kazhdan [13] used an analogy of phase correlation based on

spherical harmonics for comparison of two objects. In this particular

case it was used for registration, but can be also utilized for recogni-

tion. In [14], the authors used amplitude coefficients as the features.

Fehr [15] used the power spectrum and bispectrum computed from

a tensor function describing an object composed of patches. In [16],

the same author employed local binary patterns and in [17] he used

local spherical histograms of oriented gradients.

In comparison with traditional geometric or complex moments,

the outstanding advantage of orthogonal moments is their better nu-

merical stability, limited range of values, and existing recurrent rela-

tions for their calculation. Hence, several authors have tried to derive

the 2D invariants from orthogonal moments. In 3D, however, the
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situation is more difficult than in 2D, but one can still expect that 3D

orthogonal moments preserve their favorable numerical properties.

There exist polynomials orthogonal inside a unit ball and others that

are orthogonal on a unit cube. Seemingly, the polynomials defined

on a unit ball are more convenient for deriving rotation invariants

because the ball is mapped onto itself and the polynomials are trans-

formed relatively easily under rotation. This approach was used by

Canterakis [18] who employed 3D Zernike moments.

In this paper, we propose rotation 3D invariants from Gaussian–

Hermite moments. To derive them, we used an approach that we

already successfully applied in 2D [19]. We prove that the transfor-

mation of Gaussian–Hermite moments under rotation can be deduced

indirectly, without explicit investigation of this transformation. Un-

der our knowledge, Gaussian–Hermite polynomials are the only ones

offering this possibility. Hence, we prove in the paper that the rotation

invariants from Gaussian–Hermite moments have the same forms as

those of rotation invariants from geometric moments in 3D space.

This is an important conclusion because it allows us to reduce rotation

invariant derivation from Gaussian–Hermite moments to that from

geometric moments in 3D space, which are much easier to develop

but we still benefit from the numerical stability of Gaussian–Hermite

moments.

The core idea of the paper and its main theoretical achievement

expressed by Theorem 1 is similar to that presented in [19] for a 2D

case. It should be, however, stressed that the transition from 2D to 3D

is not generally straightforward and easy. The rotation in 3D has three

degrees of freedom comparing to a single parameter of a 2D rotation.

Hence, any 3D mathematical objects and structures somehow related

to rotation are far more rich than in 2D. Another difference that also

makes the 3D problem more complicated is that rotation in 3D is not

commutative. These are the reasons why the generalization from 2D

to 3D cannot be done automatically but should always be carefully

studied. Such studies sometimes discover an analogy with 2D (which

is the case of this paper) and sometimes end up with different results.

The rest of the paper is organized as follows. Section 2 gives a gen-

eral introduction to 3D rotation. The latest achievement about rota-

tion invariants from geometric moments in 3D space is also recalled in

this section. Section 3 reviews Gaussian–Hermite moments and gives

two theorems according to which we can use the formations of ge-

ometric invariants to build rotation invariants of Gaussian–Hermite

moments. Numerical experiments are presented in Section 4. Finally,

Section 5 concludes the paper.

2. 3D rotation and its invariants

To describe a rotation in 3D space, we use extrinsic Tait–Bryan

angle convention (z − y − x) [20]. We consider the rotation along z

axis by angle α, along y axis by angle −β , and along x axis by angle γ .

Hence, a general 3D rotation can be directly represented by a matrix

multiplication

R = Rx(γ )Ry(−β)Rz(α). (1)

Any rotation in 3D space can be decomposed into three successive

rotations as defined by Eq. (1). Thanks to this, it is sufficient to consider

elementary rotations along the axes only.

In 3D space, geometric central moment of order (p + q + r) is de-

fined

μpqr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − xc)

p(y − yc)
q(z − zc)

rf (x, y, z)dxdydz, (2)

where the centroid of the image f (x, y, z) is calculated by xc =
m100/m000, yc = m010/m000, and zc = m001/m000. Recently, Suk and

Flusser [11] proposed and implemented an automatic method for

generating 3D rotation invariants from geometric moments. Their

complete results are summarized in [21]. A list of 1185 irreducible

rotation invariants in 3D space is available there. These invariants are

built up from the moments of order 2 up to order 16. 3D rotation

invariants of geometric moments are potential tools for the applica-

tions, such as object recognition and image retrieval. However, poor

numerical stability exposes when the order of the invariant increases

to a certain number. Hence, it is necessary to develop 3D rotation in-

variants based on orthogonal moments, which generally have better

numerical stability than geometric moments.

3. 3D rotation invariants from Gaussian–Hermite moments

3.1. Gaussian–Hermite moments

The pth degree Hermite polynomial is defined by

Hp(x) = (−1)pexp(x2)
dp

dxp
exp(−x2). (3)

Hermite polynomials can be efficiently computed by the following

3-term recurrence relation:

Hp+1(x) = 2xHp(x)− 2pHp−1(x) for p ≥ 1, (4)

with the initial conditions H0(x) = 1 and H1(x) = 2x. Hermite poly-

nomials are orthogonal on (−∞, ∞) with a Gaussian weight function∫ ∞

−∞
Hp(x)Hq(x)exp (−x2)dx = 2pp!

√
πδpq, (5)

where δpq is the Kronecker delta. A weighted and normalized version,

which is actually a scaled Hermite function, is usually used in practice

H̃p(x; σ) = (2pp!
√

πσ)−1/2Hp(x/σ )exp(−x2/2σ 2). (6)

Gaussian–Hermite moment is defined with (6) being its basis func-

tion. The system (6) is not only orthogonal but also orthonormal, so it

is convenient to conduct image reconstruction from the correspond-

ing moments. However, when we multiply H̃p(x; σ) in x direction and

H̃q(y; σ) in y direction, the product depends not only on the sum p + q,

but also on the product p!q!; therefore, we must remove it from the

basis function

Ĥp(x; σ) = Hp(x/σ )exp(−x2/2σ 2). (7)

Fig. 1 shows such non-coefficient basis functions (7) of order 8 with

different σ . We call the moments with respect to the basis func-

tions (7) non-coefficient Gaussian–Hermite moments. For an image

f (x, y, z) in 3D space, its non-coefficient Gaussian–Hermite moment

of order p + q + r is defined as

ηpqr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ĥp(x; σ)Ĥq(y; σ)Ĥr(z; σ)f (x, y, z)dxdydz. (8)
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Fig. 1. Non-coefficient basis functions of the 8th order with different σ .
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