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a b s t r a c t

Kernel optimization plays an important role in kernel-based dimensionality reduction algorithms, such as

kernel principal components analysis (KPCA) and kernel discriminant analysis (KDA). In this paper, a nonpara-

metric Fisher criterion is proposed as the objective function to find the optimized kernel parameters. Unlike

other criterions that rooted in the kernel feature space, the proposed criterion works in the low-dimensional

subspace to measure the separability of different patterns. Experiments on 13 different benchmark datasets

show the effectiveness of the proposed method, in comparison with other criterions and the kernel space

methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods have been successfully applied in various classifi-

cation tasks. These methods work by employing a nonlinear mapping

φ(·) from the original input space to an arbitrarily large or infinite di-

mensional kernel feature space F, and the linear algorithms can result

in better performances in F compared to the original input space. As

the mapping φ(·) is often implicit, a kernel function is introduced to

replace the dot product of two samples in F. Thus operations in the

high-dimensional kernel feature space can be replaced by the kernel

functions in the original input space. This is the essence of kernel

methods [1].

The performance of kernel methods depends on the kernel func-

tion, which needs to satisfy the Mercer’s condition [2]. Generally used

kernel functions include the RBF kernel, sigmoid kernel, polynomial

kernel, etc. When the kernel type is determined, the remaining prob-

lem becomes how to find the optimized kernel parameters, i.e., ker-

nel optimization. If inappropriate kernel parameters are selected, the

performance of kernel methods can be even worse than that of their

linear counterparts.

As to the kernel optimization problem, various methods have been

proposed. Currently the most employed technique is the k-fold cross

validation (CV) [3], in which a large percentage of the data is used to

train the kernel algorithm, and the remaining (smaller) percentage is
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employed to test how the classification accuracy varies when differ-

ent kernel parameters are used. The parameters yielding the highest

accuracy are kept. This method can be extended to optimize multi-

ple parameters [4]. But CV only selects kernel parameters from a set

of discrete values defined empirically, and brings large computation

amount. Furthermore, it can only be performed when sufficient train-

ing samples are available. Thus, the CV method may fail to be applied

on the Small Sample Size (SSS) problem [5,6].

Some other works provides alternatives to CV. Generalized cross

validation (GCV) is an approximation to the leave-one-out CV but

much faster [7]. The Bootstrap method [8] draws a series of subset

from the training set to validate different parameter combinations.

The Bootstrap method allows overlapping between the training set

and the test set, so it is better suited to small set at the price of possible

over fitting. Just like CV, these methods have to hold aside a portion of

samples to validate the selected parameters iteratively. Some other

works use in-sample methods that skip the validation process, and the

test error is estimated by the training error analytically to select the

optimized parameters. These methods evaluate the training model

complexity and built the bias model to estimate the test error, and the

estimation process varies depending on the loss function. Generally

used in-sample methods include the squared error loss, Akaike infor-

mation criterion (AIC) and Bayesian information criterion (BIC) [9].

Another kind of kernel optimization technique is the criterion-

based methods, in which different criterions are used as object func-

tions to measure the class separability, and the goal of optimization

is then changed to find the kernel parameters that can maximize the

object function. The Fisher criterion [10] is perhaps the most famous

measure for pattern separability, which aims to maximize the ratio of
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Fig. 1. An illustration of the kernel space criterion and subspace criterion in the kernel-based classification framework.

the between-class scatter matrix and the within-class scatter matrix.

The Fisher criterion is used by Wang et al. [11], Kim et al. [12], Huang

et al. [13] and Wang [14] in the kernel space to find the best kernel pa-

rameters. You et al. [15] modified the Fisher criterion by making the

class Normal distributions in the kernel space most homoscedastic

while maximizing class separability. Liu et al. [16] took the unifor-

mity of class-pair separability into consideration along with the class

separability. Wang et al. [17] focused on optimizing the Gaussian ker-

nel, in which a decomposition of the Fisher criterion is used to derive

the explicit expression of the objective function, and two different

forms of the Fisher formulation are compared.

Current kernel optimization methods are rooted in the kernel fea-

ture space, because it is widely believed that an optimized kernel

should maximize the pattern discriminant when input samples are

projected to the kernel feature space [18]. However, when it comes

to the classification task, the situation is slightly different. As shown

in Fig. 1, the classification is actually performed in a low-dimensional

subspace, which can be regarded as a linear projection of the kernel

space on its principal axes (as to the principal components analysis

based methods) or most discriminant axes (as to the discriminant

analysis based methods). Compared with the kernel space, we are

more interested in the spatial relationship between different patterns

in the subspace, which is more relevant to the final classification ac-

curacy. Meanwhile, the optimized kernel parameters depend on the

subsequent dimensionality reduction algorithm, so it is suboptimal to

search the kernel parameter without considering the subsequent pro-

cessing. Furthermore, some non-kernel parameters may be involved

in the dimensionality reduction algorithms. However, these param-

eters cannot be optimized by the kernel space criterions. In current

researches [12,13,15–17,19], although the kernel parameters are op-

timized, the other parameters are simply set as empirical values. This

deviates from the original purpose of optimization. Due to the above

analysis, in this research we propose a criterion-based method rooted

in the subspace, aiming to find the best parameters.

Another important problem is about how to construct a criterion

to suit the subspace. The classical Fisher criterion only works when

different patterns are linearly separable, and has the underlying con-

straint that all patterns need to satisfy the Gaussian condition. To

alleviate these constraints, we propose a nonparametric Fisher crite-

rion. The idea is motivated by the recent nonparametric discriminant

analysis (NDA) researches [20–22]. The difference is that these works

aim to get the best separated subspace, while our goal is to evaluate

the separability of a given subspace. Therefore, we use a new strategy

to deemphasize the overlapped pattern parts in the criterion.

The main contributions of the proposed method are two folds.

Firstly, we propose the concept of subspace criterions to optimize the

kernel in the dimensionality reduction process, and a detailed com-

parison is conducted with conventional and state-of-the-art methods

to demonstrate its performance. Secondly, we propose a nonpara-

metric Fisher criterion, which is tailored for separability measure in

the subspace, and the effectiveness is showed both theoretically and

by experiment.

The rest of the paper is organized as follows: In Section 2, firstly

the Fisher criterion is briefly reviewed, and then the proposed non-

parametric Fisher criterion is introduced in detail. In Section 3, the

complexity of the proposed method is analyzed and compared with

conventional approaches. In Section 4, experiments on thirteen dif-

ferent data sets are conducted to verify the proposed method. Finally,

a conclusion is drawn in Section 5.

2. Main idea

2.1. The Fisher criterion for separability measure

Let D = {Di}C
i=1

be a training set of C classes, in which each class

Di = {xij}Ni
j=1

consists of Ni samples, and N = ∑C
i=1 Ni is the total sam-

ple number. Each sample xij belongs to a H-dimensional input space

�H . For the kernel-based methods, xij is then mapped to the high-

dimensional kernel space F by φ(·) : �H → F. The between-class scat-

ter matrix S
φ
B and within-class scatter matrix S

φ
W in the kernel space

are defined as

S
φ
B =

C∑

i=1

Ni

(
m

φ
i

− mφ
)(

m
φ
i

− mφ
)T

(1)

and

S
φ
W =

C∑

i=1

Ni∑

j=1

(
φ(xij)− m

φ
i

)(
φ(xij)− m

φ
i

)T
(2)

where m
φ
i

denotes the mean of the training samples from class i, and

mφ is the mean of all the training samples. As the mapping φ(·) is

implicit, it is difficult to calculate S
φ
B

and S
φ
W

directly, so kernel trick is

used here to solve this problem. A kernel function k(x1, x2) satisfies

the condition φ(x1)
Tφ(x2) = k(x1, x2). We define a Gram matrix KA,B

whose element Kij is k(xi, xj), with the constraint that xi ∈ A and xj ∈ B.

The operator sum(·)denote the summation of all elements in a matrix.

Thus the trace of S
φ
W

and S
φ
B

can be expressed as the explicit form just

using the input space �H [14]:

tr(Sφ
B ) =

C∑

i=1

Ni‖m
φ
i

− mφ‖2

=
C∑

i=1

sum(KDi,Di
)

Ni

− sum(KD,D)

N
(3)

and

tr(Sφ
W) =

C∑

i=1

Ni∑

j=1

‖φ(xij)− m
φ
i ‖2

= tr(KD,D)−
C∑

i=1

sum(KDi,Di
)

Ni

(4)

The separability of different patterns in F is measured by anticipating

that tr(S
φ
B
) is maximized while tr(S

φ
W

) is minimized. Based on this
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