
Pattern Recognition Letters 54 (2015) 63–68

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Quadratic programming for class ordering in rule induction ✩

Olcay Taner Yıldız∗

Işık University, Meşrutiyet Koyu Universite Sokak, Dış Kapı No. 2 Şile/Istanbul, Turkey

a r t i c l e i n f o

Article history:

Received 7 July 2014

Available online 12 December 2014

Keywords:

Rule induction

Quadratic programming

Class ordering

a b s t r a c t

Separate-and-conquer type rule induction algorithms such as Ripper, solve a K > 2 class problem by converting

it into a sequence of K − 1 two-class problems. As a usual heuristic, the classes are fed into the algorithm

in the order of increasing prior probabilities. Although the heuristic works well in practice, there is much

room for improvement. In this paper, we propose a novel approach to improve this heuristic. The approach

transforms the ordering search problem into a quadratic optimization problem and uses the solution of the

optimization problem to extract the optimal ordering. We compared new Ripper (guided by the ordering

found with our approach) with original Ripper (guided by the heuristic ordering) on 27 datasets. Simulation

results show that our approach produces rulesets that are significantly better than those produced by the

original Ripper.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rule induction algorithms learn a ruleset from a training set. A

ruleset is typically an ordered list of rules, where a rule contains a

conjunction of terms and a class code which is the label assigned

to an instance that is covered by the rule [9]. The terms are of the

form xi = v, xi < θ or xi ≥ θ , depending on respectively whether the

input feature xi is discrete or continuous. There is also a default class

assigned to instances not covered by any rule. An example ruleset

containing two rules for famous iris problem is:

If (x3 < 1.9) and (x4 ≥ 5.1) Then class = iris-setosa

Else

If (x3 < 4.7) Then class = iris-versicolor

Else class = iris-virginica

There are two main groups of rule learning algorithms.

Separate-and-conquer algorithms and divide-and-conquer algo-

rithms. Separate-and-conquer algorithms first find the best rule that

explains part of the training data. After separating the examples those

are covered by this rule, the algorithms conquer remaining data by

finding next best rules recursively. Consequently, previously learned

rules directly influence the data of the other rules. Separate-and-

conquer algorithms use hill-climbing [8,13], beam search [7,22], best

first search [16], genetic algorithms [24], ant colony optimization

✩ This paper has been recommended for acceptance by Eckart Michaelsen.
∗ Tel.: +90 216 528 7157, 90 216 3341508; fax: +90 216 710 2872.

E-mail address: olcaytaner@isikun.edu.tr, olcaytaner@gmail.com

[15,18], fuzzy rough set [4,20,25], neural networks [12] to extract

rules from data.

Divide-and-conquer algorithms greedily find the split that best

separates data in terms of some predefined impurity measure such

as information gain, entropy, Gini index, etc. After dividing exam-

ples according to the best split, the algorithms conquer each part

of the data by finding next best splits recursively. In this case, pre-

viously learned splits in the parent nodes directly influence the

data of the descendant nodes. Divide-and-conquer algorithms use

stepwise-improvement [6,17], neural networks [11], linear discrimi-

nant analysis [10,14,26], support vector machines [2,23] to learn trees

from data.

This paper is mainly related with the algorithms following sep-

arate and conquer strategy. According to this strategy, when a rule

is learned for class Ci, the covered examples are removed from the

training set. This procedure proceeds until no examples remain from

class Ci in the training set. If we have two classes, we separate positive

class from negative class. But if we have K > 2 classes, as a heuristic,

every class is classified in the order of their increasing prior proba-

bilities, i.e., in the order of their sample size. The aim of this paper

is (i) to determine the effect of this ordering on the performance of

the algorithms and (ii) to propose a better algorithm for selecting the

ordering.

Ripper, arguably one of the best algorithms following separate-

and-conquer strategy, learns rules to separate a positive class from

a negative class. In the example above, Ripper first learns rules to

separate class iris-setosa from both classes iris-versicolor and iris-

virginica, then learns rules to separate class iris-versicolor from class

iris-virginica. The ordering of classes is selected heuristically and may

not be optimal in terms of error and/or complexity. In Fig. 1 we see an

http://dx.doi.org/10.1016/j.patrec.2014.12.002

0167-8655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2014.12.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.12.002&domain=pdf
mailto:olcaytaner@isikun.edu.tr
mailto: olcaytaner@gmail.com
http://dx.doi.org/10.1016/j.patrec.2014.12.002

64 O. T. Yıldız / Pattern Recognition Letters 54 (2015) 63–68

0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3

If (x1 < 3) and (x2 < 1)
Then class =

Else
If (x1 > 1.5) and (x2 < 1.5)

Then class =
Else

If (x1 < 1.5)
Then class =

Else
If (x1 > 3)

Then class =
Else class =

If (x1 < 1.5) and (x2 > 1)
Then class =

Else
If (x1 > 3)

Then class =
Else

If (x1 < 1.5)
Then class =

Else class =

Fig. 1. For two different class orderings, separation of data and learned rulesets.

example case, where two different orderings produce two different

rulesets with the same error but different complexity, one composed

of four rules with six terms, other composed of three rules with four

terms. Although we prefer the second ordering, the heuristic may lead

us to the first ordering.

In this paper, we propose an algorithm to find the optimal class

ordering. Pairwise error approximation (PEA) assumes that the error

of an ordering is the sum of K(K − 1)/2 pairwise errors of classes. We

train a random set of orderings and use the test error of them as train-

ing data to estimate the pairwise errors. Given the estimated pairwise

errors, the algorithm searches for the optimal ordering exhaustively.

In the earlier version of this work [1], we proposed uncon-

strained quadratic optimization for extracting the optimal ordering;

this present paper extends (i) the quadratic optimization by both for-

mulation and explanation, (ii) the experiments significantly to include

newer results on significantly more datasets. In the former publica-

tion, the quadratic optimization is not constrained and therefore can

be easily (but sometimes wrongly in terms of pairwise error estima-

tions) solved by just taking derivatives. In this paper, we constrain

the quadratic optimization problem, and now the pairwise error

estimations must obey the constraints.

This paper is organized as follows: In Section 2, we explain the

rule induction algorithm Ripper. In Section 3 we explain our novel

PEA algorithm. We give our experimental results in Section 4 and

conclude in Section 5.

2. Ripper

Ripper learns rules from scratch starting from an empty ruleset.

It has two phases: in the first phase, it builds an initial set of rules,

one at a time, and in the second phase, it optimizes the ruleset m

times [8].

The pseudocode for learning ruleset from examples using Ripper

is given in Fig. 2. When there are K > 2 classes, the classes of the

dataset are increasingly sorted according to their prior probabilities

resulting in permutation, π (line 1). For each class πp, its examples

are considered as positive and the examples of the remaining classes

πp+1, . . . , πK are considered as negative (line 4). Rules are grown (line

9), pruned (line 10) and added (line 16) one by one to the ruleset. If the

recent ruleset’s description length is 64 bits more than the previous

ruleset’s description length rule adding stops and the ruleset is pruned

(lines 12–14). The description length of a ruleset is the number of bits

1 Ruleset Ripper(D, π)
2 RS = {}
3 for p = 1 to K
4 Pos = πp, Neg = πp+1, . . ., πK

5 RS p = {}
6 DL = DescLen(RS ,Pos,Neg)
7 while D contains positive samples do
8 Divide D into Grow set G and Prune set P
9 r = GrowRule(G)
10 PruneRule(r, P)
11 DL’ = DescLen(RS p + r, Pos, Neg)
12 if DL’ > DL + 64
13 RS = PruneRuleSet(RS p + r, Pos, Neg)
14 return RS
15 else
16 RS p = RS p + r
17 Remove examples covered by r from D
18 for i = 1 to 2
19 OptimizeRuleset(RS p, D)
20 RS = RS + RS p

21 return RS

Fig. 2. Pseudocode for learning a ruleset using Ripper on dataset D according to class

ordering π .

Fig. 3. Pseudocode for growing a rule using dataset D.

to represent all the rules in the ruleset, plus the description length of

examples not covered by the ruleset. Ripper uses

DescLen = ||k|| + k log2

n

k
+ (n − k) log2

n

n − k
(1)

bits to send rule r with k conditions, where n is the number of possible

conditions that could appear in a rule and ||k|| is the number of bits

needed to send the integer k [8]. If there are no remaining positive

examples (line 7) rule adding stops. After learning a ruleset, it is

optimized twice (line 18).

Fig. 3 shows the pseudocode of growing a rule. Learning starts

with an empty rule (line 2), and conditions are added one by one.

At each iteration, the algorithm finds the condition with maximum

information gain on the dataset D (line 4) by using the information

gain defined as follows

Gain(R′, R) = s

(
log2

N′
+

N′ − log2

N+
N

)
(2)

where N is the number of examples, N+ is the number of true positives

covered by rule R and N′, N′+ represent the same descriptions for the

candidate rule R′. s is the number of true positives after adding the

condition in R [19]. When the best condition is found, we add that

condition to the rule (line 5). We stop adding conditions to a rule

when there are no negative examples left in the grow set (line 3).

The pseudocode for pruning a rule is given in Fig. 4. We search

for a condition whose removal causes the most increase in rule value

metric (lines 9–12) and if such a condition is found, we remove it

(lines 14 and 15). Rule value metric is calculated by

M(R, D) = N+ − N−
N+ + N−

(3)

where N+ and N− are the number of positive and negative examples

covered by R in the pruning set D. We stop pruning when there is no

more improvement in rule value metric (line 4).

Download English Version:

https://daneshyari.com/en/article/536303

Download Persian Version:

https://daneshyari.com/article/536303

Daneshyari.com

https://daneshyari.com/en/article/536303
https://daneshyari.com/article/536303
https://daneshyari.com

