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a b s t r a c t

Object detection methods based on keypoint localization are widely used, and the rotation invariance is

one of the fundamental issues to consider. This paper proposes a novel shape prior model with rotation

invariance. The proposed shape prior model discards all orientation-involved features and only uses the

distance features among keypoints, hence it is competent to detect objects with a rotation of the arbitrary

angle when combined with local appearance description with rotation invariance. In the stage of detection,

belief propagation algorithm is employed, so that our method no longer needs the initial position of the

keypoints. Furthermore, we generalize the classical distance transforms, the generalized distance transforms

make the beliefs to be calculated in a nearly linear time. Experiments were carried out on face category

and touring-bike category in the Caltech-256 database. The results demonstrated that the proposed method

achieved a strong robustness of rotation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The object detection methods based on keypoint localization have

attracted increasing attention [1–11]. They can achieve an accurate

location for all of the keypoints at once, because they combine the

appearance information around each keypoint and the information

about spatial relationships among them. Thus, methods of this kind

need one appearance feature to describe the local appearance infor-

mation, and one shape prior model to describe the spatial information

among the keypoints. In detection, consideration must be given to the

matching of both the local appearance and the spatial relationships

simultaneously.

Generally, the shape prior affects the performance of the whole

system directly. In many circumstances, rotation invariance is an im-

portant property required for the shape prior model. In this paper,

two issues about the shape prior are discussed: (1) the way of the

shape description; (2) the shape detection (optimizing the objective

function).

The influence of the first issue on the keypoint localization is

huge. Some kinds of shape prior models [5,7–9] use the orientation-

involved features to describe the shape. For example, the shape prior

of pictorial structures model (SPS) [5,7] employs the tree to repre-

sent the frame of the shape prior, where each keypoint is a node of

the tree. The edge represents the spatial relationship between two
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keypoints, and the coordinate difference of these two keypoints is

treated as the feature of this edge. However, it is difficult to match

these shape priors to the rotated shape due to their high sensitivity

to rotation. To obtain a shape description with rotation invariance,

there are mainly two ideas to follow: (1) estimating the orientation of

the object and transforming the current object into the upright object

and finally re-matching the upright object with the model; (2) using

the orientation-insensitive shape description. Most shape prior mod-

els [10–13] belong to the first category, which possess the rotation

invariance by estimating a rotation matrix. In the training stage of

these methods, the training shapes are obtained by being manually

labeled, and then usually aligned with an upright regular shape. Af-

ter that, the components of interest are extracted from the aligned

shapes. For example, the components of interest in the sparse shape

prior [12,13] are the sparse code-books, while the components of in-

terest in ASM (active shape model) [10] or AAM (active appearance

model) [11] are the principal components. The components of inter-

est are combined linearly to form the upright version of the object

shape, and finally the upright shape is rotated by the rotation matrix

to obtain the practical shape. From the above description, the proce-

dure of training is verbose, and it is difficult to estimate an accurate

rotation matrix.

Another issue for keypoint localization is shape detection. Some

methods (e.g. ASM [10], AAM [11] or sparse shape prior [12,13])

adopted the alternating policy during detection. As a result, the

detection usually becomes two alternating procedures: one pro-

cedure that matches the components-of-interest-combined shape

with the upright current shape transformed from the current esti-

mated shape, another procedure that updates the rotation matrix via
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procrustes analysis [14]. However, this kind of the detection frame-

work implies that a proper initial localization is necessary [11] and

that the radii of convergence are small. Actually, SPS [5,7] employed

belief propagation (BP) algorithm [15] during detection. BP provides a

new idea for the detection, in which the initial value is no longer nec-

essary. In the BP algorithm, a kind of information called the belief is

exchanged between the keypoints. After multiple iteration, each key-

point would gather the information of all the other ones, allowing the

location to be more accurate. More attention [16–18] has been paid

to BP since the appearance of fast distance transforms [18]. However,

to the best of our knowledge, the current BP based methods do not

consider the rotation of the object, so the fast distance transforms are

not applicable in our case.

This paper proposes a new shape priori model which uses

the orientation-insensitive shape description directly. The proposed

shape prior can be combined with some rotation-invariant local ap-

pearance description [19] to achieve the detection with arbitrary ro-

tation. We need to construct a graphical model to represent the frame

of the shape prior. As same as SPS, each edge shows the spatial re-

lationship between two keypoints. In order to remove the influence

of objective rotation on detection, only the distance is treated as the

feature of the edge. Since dynamic programming algorithm used in

[5,7–9] does not allow cycles in the graphical model [20], we adopted

the BP algorithm to obtain the accurate detection result. However,

due to the consideration of the rotation, the form of the beliefs (called

the generalized beliefs) used in our method is different from that used

in [5,8]. So we generalized the distance transforms algorithm [18] to

make the calculation of the generalized beliefs be accomplished in

nearly linear time.

2. Methods

The major function addressed by our method can be summarized

as: given a testing image in which the orientation of the object is

arbitrary, output the positions of all of the keypoints.

2.1. Shape prior

In this section, the shape prior model is built using the training

set, where the shape in each training image is labeled manually. The

ith shape is described as the matrix di ∈ Rn×2, where n is the number

of keypoints. Each row of di is the coordinate of one keypoint. The set

of training shape can be denoted as D = {d1, d2, . . . , dk}. Let L ∈ Rn×2

be the shape of the object in the testing image. The proposed prior

model of the shape L is defined as

F(L) =
∑

(vi,vj)∈E

(
2

√
(yi − yj)2 + (xi − xj)2 − mij

)2

, (1)

where V = {v1, v2, . . . , vn} represents the set of keypoints, and [yi, xi]

denotes the coordinate of keypoint vi. mij is the mean distance be-

tween vi and vj, which can be estimated by training set D. V is the set

of vertices of G, and E is the set of edges of G. In our experiment, if

the number of keypoints was larger than 2, we constructed the min-

imum Hamiltonian cycle taking the variance of the distance as the

weight, so the constructed minimum Hamiltonian cycle was treated

as the graph. The aim is to reduce the distance volatility between the

nearby keypoints, and raise the detection precision. In addition, if the

spatial constraint of some keypoint is weak, one additional edge can

be optionally added to be connected to that keypoint.

As can be seen in Section 2.2, Eq. (1) imposes penalty to the de-

viation of some distances from the mean distances. In other words,

it restrains the distances between the keypoints around their mean

values. In addition, involving the distances only, our shape prior has

completely removed the influence of objective rotation on detection.

2.2. Shape detection

Given a testing image with the image size of H × W , we search the

optimal shape L∗ by minimizing the following object function:

P(L) = λF(L)+ R(L)

= λ
∑

(vi,vj)∈E

(
2

√
(yi − yj)2 + (xi − xj)2 − mij

)2

+
∑
vh∈V

rh(yh, xh), (2)

where rh(y, x) represents the cost value when the hth keypoint is

placed at [y, x]. In our paper, it is determined by inputting the local

appearance feature around the keypoint into SVM classifier [21,22];

the details can be found in Section 3. Minimizing Eq. (2) ensures not

only the low cost value of each keypoint, but more importantly, also

the intrinsic spatial relationship between keypoints. λ is the weight

of shape prior model, which exhibits the degree of elasticity within

the spatial relationship. If λ is excessively large, the shape prior would

be solidified and lose flexibility. Because of the existence of the cycle

in our graphical model, we adopt the BP algorithm [15] to optimize

Eq. (2). The pseudo-code of the BP algorithm is shown as follows:

Algorithm 1 BP algorithm.

Initialization:

1: Set t = 0;

2: Set q0
ij

=Zero matrix, q0
ji

=Zero matrix;

Iteration:

3: while the algorithm is not convergent do

4: for all (vi, vj) ∈ E do

5: for all [yj, xj] ∈ {1, . . . , H} × {1, . . . , W} do

6:

qt+1
ij

(yj, xj) = min
yi,xi

{(
2

√
(yi − yj)2 + (xi − xj)2 − mij

)2

+ ri(yi, xi)/λ +
∑

s∈(ζ (i)−j)

qt
si(yi, xi)

}
; (3)

7: end for

8: for all [yi, xi] ∈ {1, . . . , H} × {1, . . . , W} do

9:

qt+1
ji

(yi, xi) = min
yj,xj

{(
2

√
(yj − yi)2 + (xj − xi)2 − mji

)2

+ rj(yj, xj)/λ +
∑

s∈(ζ (j)−i)

qt
sj(yj, xj)

}
;

10: end for

11: end for

12: t=t+1;

13: end while

14: for all j ∈ {1, . . . , n} do

15: L∗(j, :) = arg min
yj,xj

{rj(yj, xj)+ ∑
s∈ζ (j)

qt
sj
(yj, xj)};

16: end for

Output:

The position of all the keypoints L∗.

where the matrix qt
ij

of H × W denotes the belief spreading from vi to

vj after the tth iteration, ζ (i)denotes the set of vertexes adjacent to vi

in G. Intuitively, the calculation of belief needs a two-hierarchy loop.

One loop is implemented for [yj, xj], and another loop is implemented

for [yi, xi], so the time complexity is O((H × W)2). However, Pedro F.

Felzenszwalb reduced the time complexity of the distance transforms

(shown as Eq. (4)) to O(H × W) in [18].

Df (p, k) = min
y,x

{(y − p)2 + (x − k)2 + f (y, x)}, (4)
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