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a b s t r a c t

In order to find the correct model order in non-negative matrix factorization (NMF), an algorithm called

automatic relevance determination (ARD) is proposed in Tan and Fevotte (2013). The algorithm explores

the similarities of the NMF components and removes redundant ones iteratively. However, the algorithm

can yield over-parsimonious representations where ground truth patterns can be grouped into one single

component to cause superposition. In this paper, mixed entropy regularized NMF (MER-NMF) is proposed

to overcome the above problem. In MER-NMF, the objective function of NMF is regularized by minimizing

a mixed entropy of the coefficient matrix which is a weighted sum of two parts: the entropy of all the

entries and the entropy of the row sums of the coefficient matrix. With the mixed entropy regularization, the

algorithm tends to yield sharper activations of the components for each sample. By combining MER-NMF and

ARD-NMF, correct number of components can always be selected according to our experiments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, nonnegative matrix factorization (NMF) has

received a lot of attention in machine learning and data mining re-

search [5]. The most attractive property of NMF is that it is able to de-

compose the input data matrix into nonnegative components, which

enables it to find repeated “parts” from the “whole” dataset. Because

the number of components is far less than the number of data sam-

ples, NMF actually acts as a dimension reduction tool. One of the open

problems in NMF is how many components one should choose for the

factorization, i.e. the model order selection problem. The problem is

actually related to many other concurrent NMF research topics, such

as sparse NMF [3], Bayesian NMF [1], and graph regularized NMF

[11], as is explained below: (1) If an algorithm could correctly allo-

cate the number of components in the data, the solution would also

be optimal for sparse NMF, since fewer components would not be

adequate to model the data. (2) With adequate Bayesian priors, NMF

would produce solutions which reflect the underlying data structures

and imply the correct number of components [1]. (3) In our previous

work [11], we observed that with graph regularization NMF tends to

be insensitive to the choice of the model order.
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Techniques like Bayesian information criterion (BIC) [10] cannot

be applied to the problem of NMF model order selection, because

the number of parameters is assumed constant in BIC, while actu-

ally it scales linearly with the number of data points [12]. Markov

chain Monte Carlo (MCMC) methods proposed in [1] and [6] calcu-

late the evidence for each candidate value of the model order, and

the model order with highest evidence value is selected. However,

the sampling-based methods are computationally intensive [9,12,13].

As a by-product, model order selection can also be achieved by impos-

ing sparsity in NMF as is studied in [7]. Bayesian NMF is applied in [2]

with priors which would restrict the NMF algorithm towards better

solutions. As the most recent state-of-the-art work, Tan and Fevotte

proposed a novel algorithm for automatic relevance determination in

NMF in [12] which outperforms the methods using sparse NMF in [7]

and Bayesian NMF [2]. The detailed explanation will be given below.

1.1. Automatic relevance determination

In [12], the model order selection problem is converted into an

automatic relevance determination (ARD) of the components to be

learned. For the NMF with Kullback–Leibler divergence, the entries of

each component and its corresponding activations in the coefficient

matrix are assumed to be generated from a half-normal distribu-

tion with parameter λ. A large λ indicates a strong relevance of this

component to model the data, while a small one implies a weak rele-

vance. Furthermore, an inverse-Gamma prior is imposed on the hyper
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parameter λ. The inverse-Gamma distribution has a shape parame-

ter a and a scale parameter b. With the Bayesian formulation and

by maximizing the log posterior, an elegant updating algorithm is

derived and has manifested its good performance on three datasets.

As is reported in Section 4 of [12] and also according to our own

experiences on this algorithm, smaller values of the shape parameter

a typically produce better results, while larger values do not. How-

ever, a small a can be dangerous because the algorithm tends to yield

over-parsimonious representations where some ground truth pat-

terns can be grouped into one single component to lead to erroneous

superposition. So as is concluded in [12], it is still an open problem to

find a suitable a.

In this paper, we try to avoid the problem of looking for a proper

shape parameter a by introducing entropy regularization for NMF.

1.2. Entropy regularization

In information theory, Shannon entropy is a measure of uncer-

tainty in random variables. The entropy rate of a data source means

the average number of bits per symbol needed to encode it. In the

problem of model order selection in NMF, we hope to reduce the un-

certainty when representing the data using the components. In other

words, it is not expected that two or more components behave sim-

ilarly, i.e. similar components should be suppressed. By doing this,

it will reduce the average number of components per data sample

for representation. Therefore, we can achieve this by minimizing the

entropy of the activation coefficients of the components.

In this paper, NMF with Kullback–Leibler divergence is first briefly

introduced where probabilistic constraints are imposed by using the

�1 normalization. The normalization, on one hand endows the NMF

model with a probabilistic interpretation, and on the other hand

makes the definition of entropy reasonable. Two entropy terms are

considered as regularization functions. The first one is the entropy of

the coefficient matrix which reflects the flatness of the joint distribu-

tion of components and data samples. The second one is the entropy

of the row sums of the coefficient matrix which governs the contri-

butions of every component. The lower the two entropy values, the

sparser the representations.

1.3. Outline of the paper

The remaining parts of the paper are listed as below. In Section 2,

we present the mixed entropy regularized NMF and derive its algo-

rithms. In Section 3, the performance of the algorithms are evaluated

on Swimmer dataset and TIDIGITS speech dataset. Conclusions are

drawn in Section 4.

2. Nonnegative matrix factorization with mixed entropy

regularization

2.1. NMF with Kullback–Leibler divergence

Let V denote the nonnegative data matrix to be factorized, NMF

with Kullback–Leiber divergence can be modeled as the following

optimization problem.

argminW,H KLD(V||WH)

s.t.
∑

i Wi,k = 1, Wi,k ≥ 0∑
k,j Hk,j = 1, Hk,j ≥ 0.

(1)

In Eq. (1), the input data matrix V is normalized by Vi,j ← Vi,j/∑
i,j Vi,j. KLD(x||y) := ∑

i xilog xi/yi is the Kullback–Leiber divergence

between two discrete distributions x and y. The columns of W is nor-

malized such that
∑

i Wi,k = 1. The coefficient matrix H is normalized

by Hi,j ← Hi,j/
∑

i,j Hi,j. The above normalization endows the NMF with

a probabilistic interpretation. In the wordings of topic modeling, Vi,j

corresponds to the joint probability of observing term ti in document

dj, i.e. Pr(ti, dj). Wi,k = Pr(ti|zk) is the conditional probability of term

ti given latent topic zk. Hk,j corresponds to the joint probability of

observing topic zk in document j, i.e. Pr(zk, dj).

2.2. Mixed entropy as a regularizer

In this section, we consider to minimize the entropy of the co-

efficient matrix H. For a multivariate random variable, low entropy

states the preference for a few values, while a high entropy is realized

by spreading the probability mass over many values. By minimizing

entropy, we expect to “sharpen” the entries in the coefficient matrix

H, such that the important components become salient while unim-

portant ones vanish.

Two types of entropy of H are constructed to regularize the original

NMF objective function. The first ones is the entropy of the matrix

in Eq. (2). Note that
∑

k,j Hk,j = 1 satisfies the probability rationale.

Hence, R1(H) ≥ 0.

R1(H) := −
∑
k,j

Hk,jlog2(Hk,j). (2)

The second term is the entropy of a marginal distribution which

shows the total activations of each component through the data.

R2(H) := −
∑

k

Sklog2(Sk), (3)

where Sk = ∑
j Hk,j/

∑
k,j Hk,j refers to the row sums of H. Again it is

easy to check that
∑

k Sk = 1 and R2(H) ≥ 0.

By minimizing the above two terms, a compact H is expected in

which only a few entries in some rows of H have positive activations.

The joint cost function for the mixed entropy regularized NMF (MER-

NMF) therefore becomes,

F := KLD(V||WH)+ αR1(H)+ βR2(H), (4)

where α and β are the regularization parameters. The optimization

problem is thus,

argminW,H F(V||WH)

s.t.
∑

i Wi,k = 1, Wi,k ≥ 0,∑
k,j Hk,j = 1, Hk,j ≥ 0.

(5)

2.3. The derivation of the algorithm

The algorithm to solve problem (5) is listed in Table 1. The deriva-

tion of the updating of W is the same as in [5] and the normalization

in step 3 of Table 1 will not affect the convergence as is explained in

[11]. The objective function of H, F(H), is non-convex. It is difficult

to derive updating rules by using an auxiliary function. Traditional

optimization techniques can be implemented in this constrained op-

timization problem, such as gradient descent and active sets. How-

ever, multiplicative updates are simple to implement and having good

properties of zero-locking and nonnegativity keeping. Therefore, mul-

tiplicative updating rules are adopted in this paper where an expo-

nential parameter γ performs as a tunable step size. Let �+
HF and

�−
HF be the positive and negative part of the derivative with respect

to H. The multiplicative update is as follows,

H ← H �
(∇−

H (F)

∇+
H (F)

)γ

(6)

It is straightforward to see that H is left unchanged when ∇+
H (F) =

∇−
H (F), i.e. the gradient is zero. If the gradient is positive, i.e. ∇+

H (F) >

∇−
H (F), H will decrease and vice versa if the gradient is negative.

γ is a step size parameter that potentially can be tuned to assist con-

vergence. When γ → 0 only very small steps in the negative gradient

direction are taken. Thus, there is a one-to-one relation between fixed

points of the multiplicative update rule and stationary points under

gradient descend [8].
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