
Pattern Recognition Letters 52 (2015) 48–52

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Maximum distance minimization for feature weighting ✩

Jens Hocke∗, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

a r t i c l e i n f o

Article history:

Received 17 April 2014

Available online 16 October 2014

Keywords:

Feature selection

Feature weighting

Metric learning

k-Nearest-Neighbor

Relief

Large Margin Nearest Neighbor Classification

a b s t r a c t

We present a new feature weighting method to improve k-Nearest-Neighbor (k-NN) classification. The pro-

posed method minimizes the largest distance between equally labeled data tuples, while retaining a minimum

distance between data tuples of different classes, with the goal to group equally labeled data together. It can

be implemented as a simple linear program, and in contrast to other feature weighting methods, it does not

depend on the initial scaling of the data dimensions. Two versions, a hard and a soft one, are evaluated on

real-world datasets from the UCI repository. In particular the soft version compares very well with competing

methods. Furthermore, an evaluation is done on challenging gene expression data sets, where the method

shows its ability to automatically reduce the dimensionality of the data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The k-Nearest-Neighbor (k-NN) algorithm is a popular non-linear

classifier [1]. The main advantage of this approach is, that it is sim-

ple and the results are easy to interpret. A major disadvantage is,

however, that the classification results largely depend on the scaling

of the input data and the measured features. The scaling may be very

arbitrary, and the most commonly used distance measure, the Eu-

clidean distance, may not be a good choice. Therefore, to assure good

classification performance, we need to adjust the scaling and distance

measure to fit the data.

By scaling the features through appropriate weighting, the clas-

sification performance can be improved significantly. This applies

not only to the k-NN but also to many other distance based clas-

sifiers. The quality of the scaling can be measured by the k-NN

error rate. An optimal rescaling should minimize the classification

error E of the k-NN algorithm. The goal is to find a weight vector
�w ∈ �D, wμ ≥ 0,μ = 1, . . . , D that helps the classifier to minimize E.

This problem is referred to as the feature weighting problem, which

is similar to the problem of relevance learning in the context of LVQ

classifiers [2]. It is, however, not as closely tied to one classifier as LVQ.

For the Euclidean distance, the weighted distance between two

data points �x, �x′ ∈ �D is given by

d(�x, �x′) = ||�x − �x′|| �w =

√√√√√ D∑
μ=1

wμ(xμ − x′
μ)2, (1)

✩ This paper has been recommended for acceptance by Jie Zou.
∗ Corresponding author. Tel.: +49 451 500 5509.

E-mail address: hocke@inb.uni-luebeck.de (J. Hocke).

also called the weighted Euclidean distance. This distance measure

takes the dimension relevance for classification into account. For ir-

relevant dimensions, the weights may become zero. This leads to a

dimensionality reduction of the data set, which is desirable, because

it increases the noise robustness and the generalization performance.

Several methods are available for feature weighting. The most

simple approach is to rescale every dimension through normalization

of the data distribution variance along every dimension. However,

this does not take class label information into account. The Relief

algorithm by Kira and Rendell [3] aims to account for this problem. It

takes the distance of every data point to its nearest neighbors of the

same and a different class. The ratio between these two distances is

optimized iteratively such that data from the same class are grouped

together. Simba [4] extends this concept. This is done by an iterative

update of the nearest neighbors based on the current weight vector

for the distance measure. Originally, both methods were developed to

select the most important dimensions for classification by learning a

weight vector. Other methods for feature weighting are the I-Relief [5]

and the loss-margin based algorithm (LMBA). The I-Relief is another

extension of Relief that uses the current weight vector when selecting

the nearest neighbors. LMBA is derived from the Large Margin Nearest

Neighbor Classification described in the next paragraph. For every

data point, a circular area is spanned by a k-Neighborhood of equally

labeled data points. By adapting the weight vector, LMBA tries to clear

this area plus some margin from differently labeled data.

Instead of the weighted Euclidean distance, one can also optimize

the Mahalanobis distance

d(�x, �x′) = ||�x − �x′||W =
√

(�x − �x′)T W(�x − �x′) (2)

to improve the k-NN classification. Here, an entire positive semidef-

inite matrix W is optimized. By doing so, we are solving a metric

http://dx.doi.org/10.1016/j.patrec.2014.10.003

0167-8655/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2014.10.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.10.003&domain=pdf
mailto:hocke@inb.uni-luebeck.de
http://dx.doi.org/10.1016/j.patrec.2014.10.003

J. Hocke, T. Martinetz / Pattern Recognition Letters 52 (2015) 48–52 49

learning problem, by which features can be decorrelated as a major

benefit over feature weighting. In case we restrict W to a diagonal

matrix, we again obtain the feature weighting problem. Thus fea-

ture weighting is a subclass of metric learning. Often, one wants to

stick within this subclass. This is to avoid a mixing of all dimensions,

which keeps and allows an interpretation of individual dimensions.

Large Margin Nearest Neighbor Classification (LMNN) [6,7] is a well

known metric learning method, which is closely linked to the concept

of the k-NN classifier. Like LMBA, LMNN tries to free an area spanned

by k equally labeled data points plus some margin from differently

labeled data points. However, instead of the weighting vector a com-

plete metric is adapted.

Learning a linear transformation of the data space and using the

Euclidean distance in the transformed space is equivalent to using the

Mahalanobis distance in the original space:

||�x − �x′||W =
√

(�x − �x′)T W(�x − �x′) (3)

=
√

(�x − �x′)T LT L(�x − �x′) (4)

=
√

(L�x − L�x′)T(L�x − L�x′) = ||L�x − L�x′||2, (5)

with the transformation matrix L and a metric W = LT L. To reduce the

dimensionality, Principal Component Analysis (PCA) or Independent

Component Analysis (ICA) [8] can find such a linear transformation,

independent of the labeling. While PCA decorrelates the dimensions,

ICA minimizes their statistical dependence. However, since the trans-

formations are found without label information, the transformed

space may not be optimal for classification. This is addressed by

Linear Discriminant Analysis (LDA) [9]. It optimizes the ratio between

scatter of equally labeled data points (intraclass) and differently la-

beled data points (interclass) in the transformed space. In the original

formulation it was limited to a two class setting, but it has been ex-

tended to handle multiple classes [10]. These linear transformations

share the mixing of dimensions with the metric learning approaches,

making it harder to interpret the results in the transformed space.

It is important to note that often not only the weights are updated,

but also prototypes which are used to improve the performance of

k-NN on large datasets. For example, this can be done by a fuzzy-

artificial immune system [11]. However, reduction of the training

dataset is out of the scope of this work.

Here, we focus on feature weighting, which allows a better in-

terpretation of the results, but without the decorrelation ability. In

the following, we give a detailed description of our linear program-

ming approach for feature weighting [12] and extend it by allowing

soft constraints. Besides evaluating the methods on UCI data, we also

demonstrate the dimension reduction capabilities on gene expression

data in Section 3.

2. Methods

2.1. Maximum distance minimization

A good weighting vector �w minimizes the classification error E of

the k-NN algorithm. The idea of our approach is that the k-NN clas-

sification performance should improve, if equally labeled data points

are close together and differently labeled data points are far apart.

We want to achieve this by minimizing the maximum distance be-

tween all pairs of data points of the same class. To avoid the trivial

solution �w = �0, a constraint on the minimum distance for data points

of different classes is imposed. Due to these main ideas, which are

illustrated in Fig. 1, we call our method Maximum Distance Mini-

mization (MDM). Note, it is possible to do the opposite and impose a

maximum intraclass distance while maximizing the minimum inter-

class distance (Minimum Distance Maximization). Both approaches

are mathematically equivalent.

(a) (b)

Fig. 1. Part (a) shows two different settings. d1 denotes the shortest interclass dis-

tance. This distance is fixed to one by Eq. (6). The largest intraclass distance for class

one (crosses) is d2 and for class two (circles) d3. The larger distance of the two (d2)

determines r in Eq. (7) and is minimized.

Given data points �xi ∈ �D with class labels yi, i = 1, . . . , N, we for-

mally solve the following constrained optimization problem:

||�xi − �xj||2
�w ≥ 1 ∀i, j : yi 	= yj (6)

||�xi − �xj||2
�w ≤ r ∀i, j : yi = yj (7)

min
�w

r wμ ≥ 0 ∀μ. (8)

The above problem can be formulated as a linear program

min
�v

�f T �v s.t. A�v ≤ �b, �v ≥ �0 (9)

with �v, �f ∈ �D+1, b ∈ �N2
, and A ∈ �N2×D+1. The vector �v = (�w, r) is

optimized and with �f = (�0, 1), only the r plays a role for the mini-

mization. The constraints are imposed by

AI(i,j) =
⎧⎨
⎩

(−(�xi − �xj)◦ (�xi − �xj), 0
) ∀i, j : yi 	= yj(

(�xi − �xj)◦ (�xi − �xj),−1
) ∀i, j : yi = yj

(10)

and

bI(i,j) =
⎧⎨
⎩

−1 ∀i, j : yi 	= yj

0 ∀i, j : yi = yj

. (11)

Here we use I(i, j) = (i − 1)N + j to index the row of A and the ele-

ment of b. The Hadamard product A ◦ B = (aij · bij) is an element wise

multiplication.

In this formulation, the number of constraints grows quadratically

with the number of data points. The dimension of the vector �v to be

optimized is D + 1. Note, that the above constraints can always be

fulfilled and, therefore, our optimization problem is always solvable

despite having hard constraints.

2.2. Soft maximum distance minimization

Maximum Distance Minimization as introduced above uses hard

constraints. This punishes only the most distant pairs and may make

MDM sensible to outliers and noisy data. The softness is achieved by

introducing slack variables ξi for every data point xi. A punishment

for slack variables is added in the optimization criterion weighted by

C. This soft approach allows some intraclass distances to be larger

than r and hence to reduce the influence of outliers and noise. This is

illustrated in Fig. 2. The new optimization problem becomes

||�xi − �xj||2
�w ≥ 1 ∀i, j : yi 	= yj (12)

||�xi − �xj||2
�w ≤ r + ξi ∀i, j : yi = yj (13)

min
�w

r + C
∑

i

ξi wμ ≥ 0 ∀μ, ξi ≥ 0 ∀i. (14)

The linear program, introduced above, can easily be adopted to the

soft version. �f is extended to �f = (�0, 1, �C) and �v = (�w, r, �ξ) such that
�f , �v ∈ �D+1+N . The rows of A are changed as follows:

Download English Version:

https://daneshyari.com/en/article/536330

Download Persian Version:

https://daneshyari.com/article/536330

Daneshyari.com

https://daneshyari.com/en/article/536330
https://daneshyari.com/article/536330
https://daneshyari.com

