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a b s t r a c t

Coherent point drift (CPD) is a powerful non-rigid point cloud registration algorithm. A speed-up technique

that allows it to operate on large sets in reasonable time, however depends on efficient low-rank decompo-

sition of a large affinity matrix. The originally used algorithm for finding eigenvectors in this case is based on

Arnoldi’s iteration which, though very precise, requires the calculation of numerous large matrix-vector prod-

ucts, which even with further speed-up techniques is computationally intensive. We use a different method

of finding that approximation, based on Nyström sampling and design a modification that significantly ac-

celerates the preprocessing stage of CPD. We test our modifications on a variety of situations, including

different point counts, added Gaussian noise, outliers and deformation of the registered clouds. The results

indicate that using our proposed approximation technique the desirable qualities of CPD such as robustness

and precision are only minimally affected, while the preprocessing times are lowered considerably.

© 2014 Published by Elsevier B.V.

1. Introduction

There are numerous areas of pattern recognition and computer

graphics that rely on robust and fast point set registration algorithms.

These include, among others, image registration, medical data anal-

ysis, stereo matching and many others. Generally speaking, a regis-

tration algorithm receives two point sets as its input and returns a

deformation that optimally transforms one shape into the other, be it

a parametric function or directly positions of the aligned points.

Registration algorithms can be categorized according to the kind

of deformation they take into account when superimposing the two

shapes. First, rigid registration only allows translation, rotation and

scaling. On the other hand, non-rigid methods allow local deforma-

tions, usually consisting of piecewise rigid or affine transformations,

though there are methods that do not use explicit functions to model

their deformations such as [12] or [8].

Non-rigid registration is a most challenging task, even more so

on real-world data. Every such algorithm should be able to deal with

noise, missing and spurious false data while maintaining reasonable

computational complexity. Another non-trivial problem is that the

registration method is not aware of the deformation that is required

to align the two objects. Very complex deformations are not even

feasible as the optimization would suffer from local minima and non-
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convexity of the problem. Therefore simpler models are typically uti-

lized, such as piecewise rigid or affine transformations [16]. In con-

trast, some methods like Coherent point drift (CPD) use displacement

fields and thus calculate motion vectors for each vertex individually

within some constraints.

We present speed-up techniques for CPD that make use of faster

albeit less precise low-rank matrix approximation methods based

on the sampling of the matrix’s columns, otherwise known as the

Nyström method.

The remainder of this paper is structured the following way:

Section 2 discusses CPD and related research. Section 3 details our

acceleration methods. Section 4 presents the results and finally,

Section 5 concludes with a brief discussion.

2. Related work

2.1. Non-rigid registration algorithms

In this subsection we list some non-rigid registration algorithms

related to CPD. An excellent survey of these methods is presented in

[16].

Many modern registration methods use Gaussian mixture models

(GMM) to model their source point clouds, such as one developed by

[4] who represent the vertices in the target cloud as radially sym-

metric Gaussian kernels that compose a probability density estimate,

though the authors state that other kernel shapes can be used.
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Myronenko et al. [13] presented the Coherent point drift method.

They treat the source cloud as GMM centroids that are being fit-

ted onto the target point cloud by maximizing a probability density

function. The motion of the GMM centroids is smoothed and thus

forced to be group-wise coherent in the maximization step of the EM

algorithm [2].

A similar GMM-based algorithm has been proposed by Jian & Ve-

muri [8]. They, however use a closed-form expression of L2 distance

between two Gaussian mixtures, which decreases the computational

complexity.

Myronenko and Song [12] presented enhancements to their origi-

nal algorithm consisting mostly of speed-up techniques. Partial eigen-

vector decomposition of a matrix is used to approximate a large

matrix inversion and decrease the computational complexity of the

iteration. Additionally, the width of GMM centroids is calculated with-

out the use of simulated annealing.

Further improvements to CPD were proposed by [14] who alter-

nate the roles of source and target point cloud in every iteration. Their

approach shows some improvement in robustness on incomplete and

noised data.

Recently another GMM-based approach was introduced by [15].

Unlike previous methods they use a bidirectional EM process and

allow the GMM centroids to have different weights based on local

features. Increased robustness to outliers is reported.

2.2. Coherent point drift

In this section we briefly reiterate the non-rigid version of CPD and

identify the most obvious bottlenecks. A comprehensive description

and analysis of this method is presented in [12]. CPD can perform

rigid, affine and non-rigid registration. In the remainder of this paper

we will only work with CPD in its non-rigid mode.

Before registration, the following parameters have to be set. Mo-

tion smoothing kernel width is controlled by β (β > 0); small values

will result in locally smooth transformations, while large values will

average the individual vertex motions over large areas, turning the

deformation into a pure global translation. The amount of regular-

ization is set by λ (λ > 0); small values favor data fitting while large

values favor motion smoothing. A more detailed description of this

parameter can be found in [19]. The parameter w (0 ≤ w ≤ 1) pro-

vides an assumption concerning the expected amount of outliers and

controls the sensitivity of correspondence probability to Euclidean

distance. Large values enforce lower dependence of correspondence

probability on point distance by making the distribution more uni-

form and thus the effect of outliers and noise is mitigated.

Step 1: Given the source point coordinates Y = (y1, y2, . . . , ym)T

and the target point coordinates X = (x1, x2, . . . , xn)T . Further initial-

ize the matrix T = Y and calculate the initial estimate of σ 2:

σ 2 = 1

dnm

m,n∑
i,j=1

‖xj − yi‖2. (1)

Step 2: Construct the motion smoothing matrix G.

gij = exp

(
− 1

2β2
‖yi − yj‖2

)
, 1 ≤ i, j ≤ m. (2)

Step 3 (E-step): Construct the correspondence matrix P according

to target vertex coordinates xi and the source vertex coordinates in

the current iteration ti. Note the last term of the numerator that

blends the match probabilities with a uniform distribution based on

the value of w.

pij =
exp(− 1

2β2 ‖xj − ti‖2)∑m
k=1 exp(− 1

2β2 ‖xj − tk‖2)+ wm(2πσ 2)d/2

(1−w)n

. (3)

Step 4 (M-step): Solve Equation (4) for W to find the motion of

every target vertex in this iteration.

(G + λσ 2d(P1)−1)W = d(P1)−1PX − Y (4)

where 1 is a column vector of appropriate length whose all elements

are 1. Recalculate the transformed point cloud for this iteration T by

displacing the original source cloud with smoothed individual mo-

tions as follows:

T = Y + GW. (5)

Refine the estimate of σ 2 for the next iteration. If convergence has

been reached, return the final transformed target point set T and the

probabilities of correspondence of each pair of vertices from X and Y

in P. Otherwise proceed with Step 3.

There are two speed-up techniques proposed in [12]. One involves

the use of fast Gaussian transform by [6] or the improved fast Gaussian

transform by [18] for the calculation of the large matrix products P1,

PT 1 and PX.

The other method uses low-rank approximation of G to create the

matrices Q and �. This way G can be approximated as Ĝ = QT�Q.

It should be noted that Q consists of the first l eigenvectors with

the largest corresponding eigenvalues and � is a diagonal matrix

with l largest eigenvalues. This simplifies the linear solve operation

in Equation (4) to finding the inverse matrix to Ĝ + λσ 2d(P1)−1 using

the Woodbury identity [7] as expanded in Equation (6) and multiply-

ing the right-hand term of Equation (4). The transformed set is also

obtained using the approximated matrix T = Y + ĜW

(Ĝ + λσ 2d(P1)−1)−1 = 1

λσ 2
d(P1)

− 1

(λσ 2)2
d(P1)Q(�−1 + 1

(λσ 2)
QT d(P1)Q)−1QT d(P1). (6)

Using this expression considerably speeds up the linear solve and,

consequently, the iteration as the right-hand side only consists of

scaling, addition and multiplication by diagonal matrices in high di-

mension; matrix inversion is only done in low dimension.

The preprocessing step (partial decomposition of G into eigenvec-

tors) now becomes the most time-consuming part and we will refer

to the length of this operation as init time. On the other hand, total

time will be the time required for CPD to initialize and converge. My-

ronenko reported that about 60% of total time is init time despite a

fast method like Arnoldi’s iteration is used. Our results support this

finding and we will thus focus our acceleration endeavors to this area.

2.3. Low-rank approximations of matrices

Numerous ways of approximating matrices in low rank have been

proposed both for general matrices and for matrices with some spe-

cific property. In this subsection we review some of those methods,

however as we will want to approximate G from Equation (2) that is

a real symmetric matrix, we will limit ourselves to approximations of

those.

Possibly the most popular way is by using the eigenvector de-

composition (or singular value decomposition in general) Ĝ = QT�Q

where � is a square matrix with the k largest eigenvalues on its di-

agonal and zeros as the remaining elements and Q is the matrix con-

taining the corresponding eigenvectors. This approximation is also

optimal in terms of Frobenius norm, specifically ‖Ĝ − G‖F will be

minimal; this is, of course, dependent on finding the precise eigen-

vectors. Proof of this interesting property can be found in many linear

algebra textbooks, for instance [5].

The current algorithms that approximate eigenvectors of matrices

differ in numerical stability, computational cost and expected error

bounds. Among the most successful algorithms are those that op-

erate by constructing Krylov subspaces of the matrix. These include

among others the Arnoldi iteration which is applicable to general
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