
Image thresholding based on semivariance

M. Beauchemin ⇑
Natural Resources Canada, Canada Centre for Remote Sensing, 588 Booth Street, Ottawa, Canada K1A 0Y7

a r t i c l e i n f o

Article history:
Received 9 July 2012
Available online 7 December 2012

Communicated by S. Sarkar

Keywords:
Image thresholding
Binarization
Multiscale
Variogram
Semivariance

a b s t r a c t

In this paper, an algorithm for image thresholding based on semivariance analysis is presented. The ratio-
nale of the approach is to binarize an image such that it best reproduces the original image variation
across several spatial scales. The method can be alternatively viewed as one identifying the binary image
that best approximate the overall level of edgeness measured across multiple scales in the original image.
A comparison with seven other thresholding methods is presented for 2 synthetic images and 22 Non-
Destructive Testing (NDT) grey level images. The results indicate that the proposed method is highly
competitive. Performance of the proposed method in relation to the image content is also discussed.
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1. Introduction

Thresholding is a major class of image segmentation techniques
(Pal and Pal, 1993). Simply stated, image thresholding aims at sep-
arating foreground from background objects: foreground pixels
having perceptually different grey level values than the back-
ground. Thresholding methods are often categorized into global
or local methods (Wang et al., 2008). In global methods, a single
threshold is determined for the entire image whereas the threshold
depends on pixel position for local methods. Alternatively, thres-
holding methods can be divided into parametric or nonparametric
methods (Bazi et al., 2007). Parametric methods associate each
class with predefined statistical distributions. Nonparametric
methods are distribution-free approaches and they rely on the
optimization of one criterion (or a few numbers of). Yet, from an-
other perspective (Sezgin and Sankur, 2004), they can be catego-
rized according to the type of information used, i.e. histogram
shape, clustering, entropy, attribute similarity, spatial, and local
information (adaptive).

The large spectrum of thresholding applications is succinctly
enumerated in Sezgin and Sankur (2004). Examples of applications
domains are: document image analysis, scene processing for target
detection, change detection, and segmentation for NDT applied to
numerous image types: cell, ultrasonic, eddy current, thermal,
tomography, endoscopic, etc. (for a detailed list, see Bazi et al.,
2007; Sezgin and Sankur, 2004; Li et al., 2011; Zhang and Wu,
2011). With so diverse approaches and image types, the results
of a thresholding technique strongly depend on how the image

properties and content fulfill the method’s assumptions (Wang
et al., 2008). It is therefore not surprising that, for real-world
images, different algorithms often produce different results when
applied on a same image (Melgani, 2006; Sezgin and Sankur,
2004). There is simply no method able to achieve good perfor-
mance for all kinds of images. Nevertheless, some methods per-
form better than other ones in a general setting. Based on a
dataset of 40 NDT images, Sezgin and Sankur established that the
methods of Kittler-Illingworth (KI) (Kittler and Illingworth, 1986)
and Kapur et al. (1985) (KSW) are the ones achieving the best over-
all results (Table 7 in Sezgin and Sankur, 2004). The former uses
cluster information whereas the latter is based on entropy infor-
mation. The best method exploiting spatial information was the
one of Abutaleb (1989) and ranked 11th. The popular Otsu
(1979) method ranked 6th. Since the Sezgin and Sankur (2004)
work, several other thresholding algorithms have been published
(e.g. Wang et al., 2008; Bazi et al., 2007; Zhang and Wu, 2011;
Coudray et al., 2010). In an attempt to resolve the constancy issue
between thresholding methods, Melgani (2006) proposed a strat-
egy based on the fusion of an ensemble of thresholding methods
to derive a more robust threshold. Notably, Celebi et al. (2009)
indicates that the performance of such a fusion algorithm, when
applied to dermoscopy images, seems to depend on the choice of
the selected thresholding methods composing the ensemble
(although no comparative information is provided).

The vast majority of existing nonparametric methods for global
thresholding rely on an optimization criterion applied in the radio-
metric domain. Notably, methods exploiting spatial information
represent a small fraction of these methods (e.g. Pal and Pal,
1989; Abutaleb, 1989; Cheng and Chen, 1999; Beghdadi et al.,
1995; Pham, 2007). Still, those using spatial information mostly
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take into account only immediate pixel neighborhood, hence prob-
ing a restricted range of spatial scales. This is rather remarkable as
structural information plays an important role in human percep-
tion. In this paper, a novel algorithm for global grey level image
thresholding exploiting spatial information is described. The meth-
od seeks to best reproduce in the binary image the spatial variabil-
ity measured in the original image across scales. The algorithm is
based on the image variogram. The variogram is a statistical tool
providing a description of the scale and pattern of spatial variation
within an image (Oliver et al., 1989).

The paper is organized as follows. Section 2 provides the ratio-
nale of the method followed by a detailed description of the pro-
posed algorithm. Section 3 presents the data sets used to assess
the method and the experimental results. The behavior of the algo-
rithm in relation to image characteristics is discussed in Section 4.
The conclusions are given in Section 5.

2. Methods

Bi-level image thresholding algorithms rely on the hypothesis
that an image is composed of two components: the objects and
the background. Most algorithms are based on the premise that
both components can be isolated from each other by selecting an
appropriate threshold in the gray-level domain (Tabbone and
Wendling, 2003). However, from a human vision point-of-view,
the spatial information definitely plays an important role in recog-
nizing the two components from the structural patterns they exhi-
bit in the image. This is in line with the philosophy of Wang et al.
(2004): ‘The main function of the human visual system is to extract
structural information from the viewing field, and the human visual
system is highly adapted for this purpose.’ If further evidence was
needed, human validation through visual inspection is still a vital
step to evaluate the quality of segmentation results (Zhang et al.,
2008; Pal and Pal, 1993). From experiments, it can be observed that
different threshold values applied on a same image will produce
different spatial patterns in the resulting binary images. It is there-
fore the premise of the proposed method that the optimum thres-
holding result will be the one that best approximate the structural
information contained in the original image. To concretize this
idea, spatial pattern characteristics must be quantified in both
the original and its binarized version. Our proposal is based on a
well-recognized tool designed to describe spatial variation of an
attribute of interest: the variogram. Under the Sezgin and Sankur
(2004) categorization system, the proposed method falls under
both the attribute similarity and spatial information groups.

2.1. Preliminaries

2.1.1. Semivariance
Semivariance measures the spatial variability of a variable at

different scales, h (Jupp et al., 1989). It is defined as:

cðhÞ ¼ 1
2NðhÞ

XNðhÞ
i¼1

½gðiÞ � gðiþ hÞ�2 ð1Þ

where g(i) is the variable value (grey level) at pixel location i and
N(h) is the number of pairs of observations separated by the distance
lag, h. The function that relates c to h is called a semivariogram (in
the sequel, the term ‘variogram’ will always refer to ‘semivario-
gram’). The variogram has long been used in geostatistical structural
analysis to assess the spatial structure of a variable; it is a tool to
quantify spatially correlated variation (Jupp et al., 1989). Specifi-
cally, the variogram describes the magnitude, spatial scale and gen-
eral form of the variation (Oliver et al., 1989). It is worth noting that
because of the relaxed condition on the stationarity assumption, the
variogram can be used where auto-covariance doesn’t (Oliver et al.,

1989). Effectively, the so-called intrinsic hypothesis behind the vari-
ogram requires mean stationarity in increment.A typical variogram
is shown in Fig. 1. The shape of a variogram curve is highly depen-
dant on the image content. There are of three main descriptive fea-
ture associated with a variogram: the sill, the range, and the nugget.
The sill is the variance at which the variogram flattens off, it is a
measure of the overall variance. The absence of a sill reflects either
a data trend or the fact that object sizes are greater than the scale
probed. The range is the lag distance at which the sill is attained
(or the lag distance at which there is a very small difference to reach
the sill). The range value is linked to the size of the objects. The nug-
get variance is defined by the intercept of the variogram as h tends to
0. A non-null value is expected in the presence of uncorrelated noise.
For white noise, the expected variogram is characterized by
c(h = 0) = 0 and c(h > 0) = constant. When the number of gray level
values consist of only two values [g(i) 2 0,1], the resulting variogram
is called indicator semivariance, cI(h). Interestingly, 2cI(h) provides a
measure of the transition frequency between the two components.

2.1.2. Pham’s proposal
Pham (2007) has proposed a method for grey level image thres-

holding by minimizing the variograms of object and background
pixels. The method seeks the threshold that minimizes the follow-
ing criterion: CðtÞ ¼ 1

H

PH
h¼1½cBðh; tÞ þ coðh; tÞ�, where cB(h, t) and

c0(h, t) are respectively the variogram computed on the background
and object pixels. The value of H is selected to probe the boundaries
of objects and background pixels and therefore the value of H is
small. Pham (2007) adopted a value of H = 5, hence h = 1,2,. . ., 5.

2.2. Thresholding based on semivariance similarity: a new proposal

Let us binarize an image by setting all pixel values above a given
threshold t to z1, and all pixels that are equal or below that thresh-
old to z0. The underlying principle of the proposed algorithm is to
threshold the original image and then adjusts the binarized values,
z0 and z1, such that the semivariance of the bilevel image best
approximates the ones of the original image over a wide range of
values of h. Let c(h) denotes the semivariance of the original image
at lag distance h, and cz0 ;z1

ðh; tÞ the semivariance of its bilevel
version. The sum of the square of the difference between the semi-
variance of both images, d, can be used as a measure of ‘goodness-
of-fit’ to quantify how well the bilevel image reproduces the spatial
characteristics of the original image:

dðz0; z1; tÞ ¼
X

h

cðhÞ � cz0 ;z1
ðh; tÞ

h i2
ð2Þ

Fig. 1. Typical variogram showing sill, range and nugget points.
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